
Automatic Synthesis of Specialized Hash Functions
Renato B. Hoffmann

PUC-RS
Brazil

renato.hoffmann@edu.pucrs.br

Leonardo G. Faé
PUC-RS
Brazil

leonardo.fae@edu.pucrs.br

Dalvan Grieber
PUC-RS
Brazil

dalvan.griebler@pucrs.br

Xinliang David Li
Google
USA

davidxl@google.com

Fernando Magno Quintão
Pereira

Federal University of Minas Gerais
Brazil

fernando@dcc.ufmg.br

Abstract
This paper introduces a technique for synthesizing hash
functions specialized to particular byte formats. This code
generation method leverages three prevalent patterns: (i)
fixed-length keys, (ii) keys with common subsequences, and
(iii) keys ranging on predetermined sequences of bytes. Code
generation involves two algorithms: one identifies relevant
regular expressions within key examples, and the other gen-
erates specialized hash functions based on these expressions.
Comparative analysis demonstrates that the synthetic func-
tions outperform the general-purpose hashes in the C++
Standard Template Library and the Google Abseil Library
when keys are given in ascending, normal or uniform distri-
bution. In applications where low-mixing hashes are accept-
able, the synthetic functions achieve speedups ranging from
2% to 11% on full benchmarks, and speedups of almost 50x
once only hashing speed is considered.

CCS Concepts: • Software and its engineering → Com-
pilers.

Keywords: Hash, Synthesis, Specialization

1 Introduction
A hash function is a mathematical algorithm designed to
convert variable-length inputs into fixed-length outputs [19].
Hash functions, along with their associated hash tables, are
widely employed in data storage and retrieval. Depending on
their properties, hash functions are classified as either cryp-
tographic or non-cryptographic [3]. In both cases, there are
many algorithms available to compute hashes of sequences of
bytes [5]. Non-cryptographic hash functions, such as FNV [7]
or Murmur [1], are designed for applications that do not re-
quire the security guarantees of cryptographic hashes. Con-
sequently, they tend to offer faster performance and require
fewer resources. Due to this efficiency, non-cryptographic
functions are building blocks of a large number of comput-
ing applications. As illustrated by Kanev et al. [14]’s Figure
4, approximately 2% of all computational cycles in Google
Datacenters worldwide are dedicated to hashing.

Typical hash functions are designed to handle arbitrary
byte sequences. However, if constraints are applied to these
sequences, then it might be possible to develop faster hashes
while also maintaining or reducing collision rates. For in-
stance, the gperf Perfect Hash Function Generator from
GNU produces a perfect hash for a given set of user-provided
keywords [23]. Nonetheless, as Section 4 will show, func-
tions generated by gperf often exhibit slower performance
compared to the default hash implementations [12] found
in the C++ Standard Template Library (STL), which are gen-
eral. Indeed, to the best of our knowledge, there is currently
no code generator capable of producing specialized hash
functions that can outperform the implementations of hash
functions [11, 12] provided in C++ STL, whether in terms of
computational speed or collision rate.

Generation of Specialized Code. This paper describes a
code generation methodology to produce specialized hash
functions. Specializations are enabled by three patterns: se-
quences of bytes with fixed lengths; sequences of bytes with
common subsequences; and sequences ranging on fixed byte
intervals. Many applications use keys that meet these con-
straints: social security numbers, plate numbers, MAC ad-
dresses, etc. However, the presence of only one of these
properties is already sufficient to enable specialization. Syn-
thesis is parameterized by a set S of representative keys and
a lattice L of byte intervals. Section 3.1 explains how we
identify patterns of interest on S. The byte that represents
characters in the same index is the least upper bound of
these characters in L. Section 3.2 explains how these pat-
terns are then used to guide code generation, which relies on
machine-specific instructions to shuffle and compress bits.

Summary of Results. The ideas described in this pa-
per have been implemented in a library henceforth called
Sepe. Sepe generates C++ functions that use either x86 or
ARM-specific instructions. These functions are compatible
with STL data structures such as std::unordered_map and
std::unorder ed_set. Synthesis is guided either by exam-
ples of keys or by a user-provided regular expression describ-
ing the format of keys. Sepe functions trade dispersion by

https://orcid.org/
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://orcid.org/0000-0002-0375-1657
https://orcid.org/0000-0002-0375-1657

Renato B. Hoffmann, Leonardo G. Faé, Dalvan Grieber, Xinliang David Li, and Fernando MagnoQuintão Pereira

performance. In this sense, they follow the design philoso-
phy that Kraska et al. stress in their “Case for Learned Index
Structures”, e.g., “If the goal is to build a highly-tuned system
to store and query ranges of fixed-length records over a set of
continuous integer keys, [. . .] the key itself can be used as an
offset” [15]. Thus, in scenarios where low-dispersion is ac-
ceptable, i.e., where an adversary is not expected to force col-
lisions, Section 4.1 shows that these synthetic hash functions
can be almost 50x faster than general functions taken from
Abseil (implementations of CityHash [20] and LLH [21])
or the Standard Template Library (implementations from
murmur [12] and FNV [11]). Additionally, Section 4.2 shows
that these hashes match standard hash functions in terms of
collision rate and bucket collisions (a measure of how many
memory bins are created in data structures to store the hash
keys), when given either uniformly or normally distributed
keys. Code generation is also fast: Section 4.6 demonstrates
that it is linearly proportional to the size of the largest key.

2 Hashing: an Overview
As mentioned in Section 1, hash functions fall into two cate-
gories: cryptographic and non-cryptographic. Cryptographic
hash functions are tailored for security applications like dig-
ital signatures and password storage, embodying properties
such as collision resistance, pre-image resistance, and the
avalanche effect. Pre-image resistance ensures the difficulty
of reverse engineering the function, collision resistance em-
phasizes the challenge of finding distinct inputs with identi-
cal outputs, and the avalanche effect indicates that a slight
input change results in a significantly different output. In
contrast, non-cryptographic hash functions prioritize speed
over security. They are employed in data structures like sets
and maps for rapid data retrieval and indexing. Desirable
properties of non-cryptographic hashes include, in addition
to collision resistance, determinism, and efficiency. Deter-
minism ensures consistent outputs for identical inputs, and
efficiency underscores the quick computation of hashes. This
paper focuses specifically on non-cryptographic functions.
Example 2.1 provides an example of such function.

Example 2.1. Figure 1 shows a slightly simplified imple-
mentation of murmur hash, as taken from the C++ Standard
Template Library. This function processes arrays of charac-
teres, eight characteres at a time. To facilitate processing
data as 64-bit integers within the main loop, Line 4 removes
any bytes that are not divisible by sizeof(size_t); hence,
allowing the main loop to process the data as 64-bit integers.

2.1 Hash Specializations
The code in Figure 1 is short, and relatively simple; how-
ever, it is very efficient. An informal experiment discussed
on Stack Overflow on April 23rd, 2012 [4] showed that this
implementation outperformed eight different implementa-
tions of hash functions (FNV-1a, FNV-1, DBJ2a, DJB2, SDBM,

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

size_t _hash(void* ptr, size_t len, size_t seed) {

 size_t mul = (0xc6a4a793UL << 32UL) + 0x5bd1e995UL;

 char* buf = (char*)ptr;

 size_t len_aligned = len & ~(size_t)0x7;

 char* end = buf + len_aligned;

 size_t hash = seed ^ (len * mul);

 for (char* p = buf; p != end; p += 8) {

 size_t data = shift_mix((size_t)p * mul) * mul;

 hash ^= data;

 hash *= mul;

 }

 if ((len & 0x7) != 0) {

 size_t data = load_bytes(end, len & 0x7);

 hash ^= data;

 hash *= mul;

 }

 hash = shift_mix(hash) * mul;

 hash = shift_mix(hash);

 return hash;

}

Figure 1. Implementation of Murmur hash for 64-bit size_t,
taken from the C++ Standard Template Library. Code avail-
able at libstdc++-v3/libsupc++/hash_bytes.cc:138 on
February 26, 2024 [12]. The type of variables in this code has
been simplified for readability.

SuperFastHash, CRC32 and LoseLose) across three work-
loads. The running time of the implementation in Figure 1
is proportional to 𝑛 × 𝑐1 + 𝑐2, where 𝑛 is the size of the key
in bytes, 𝑐1 is a set of operations that run for every byte in
the key (ptr), and 𝑐2 represents the remaining constant op-
erations. While 𝑛 depends on the problem, the constants 𝑐1
and 𝑐2 can be reduced if the hash function is specialized for
particular inputs. Many distributions of industrial-quality
hash functions implement some form of specialization. Ex-
ample 2.2 illustrates one such case.

Example 2.2. Figure 2 illustrates a segment of the Polymur
Hash implementation, which is a 64-bit non-cryptographic
universal hash function. The function comprises three spe-
cializations, as highlighted in Figure 2. Each specialization
addresses distinct key lengths. These specializations opti-
mize the Polymur implementation for efficient processing of
short inputs while maintaining practicality for longer inputs.
Notice that this implementation is not a specialization of
the code earlier seen in Figure 1. Hence, in our setting, in
spite of the length-aware specializations, the hash functions
available in the Standard Template Library still outperform
the code in Figure 2 in terms of hashing speed.

The Specialization Zoo. This paper considers three types
of specializations on hash keys. Each type of specialization
results from some constraint imposed on the byte sequence
that forms the key. The following constraints are considered:

Automatic Synthesis of Specialized Hash Functions

01

02

03

04

05

06

07

08

09

10

11

12

static inline uint64_t polymur_hash_poly611(

 const uint8_t* buf,

 size_t len,

 const PolymurHashParams* p,

 uint64_t tweak

) {

 ...

 if (POLYMUR_LIKELY(len <= 7)) { ... }

 if (POLYMUR_UNLIKELY(len >= 50)) { ... }

 if (POLYMUR_LIKELY(len >= 8)) { ... }

 ...

}

Figure 2. Snippet of the implementation of Polymur Hash,
taken from https://github.com/orlp/polymur-hash on Feb-
ruary 26, 2024. The implementation is specialized for three
specific key lengths.

length: The hash is computed for sequences formed by
a fixed number 𝑛 of bytes.

range: The hash is computed for sequences ranging over
a subset of byte values.

const: The hash is computed for sequences that contain
constant subsequences occurring at fixed positions.

Each one of the constraints mentioned above restricts the
type of sequences. And each one of these restrictions leads
to a different form of optimization, which Figure 3 highlights.
These optimizations are the subject of Section 3. These spe-
cializations can be combined, as the next example explains.
Example 2.3 discusses a handwritten implementation of a
hash function; however, the techniques that Section 3 intro-
duces generate functions that are equally as efficient.

Constant byte
subsequences

Skip table

Fixed-length sequences
Unroll & vectorize

Constant bits
Remove constant bits

Section 3.2.2 Section 3.2.3

Section 3.2.1

OffXor
Aes

Pext

Naive

Figure 3. The three subsets of the byte sequences that enable
the specializations discussed in this paper, with constraints
above the line, and optimizations under it. Section 4 shall
define the hash functions Naive, Pext, OffXor and Aex.

Example 2.3. Figure 4 shows a handwritten hash function
specialized for US’ Social Security Numbers (SSN). SSNs are

11-character strings following the format “xxx.xx.xxxx”,
where x ∈ [0 . . . 9]. The function in Figure 4 was suggested
in a reddit forum where the library introduced in this paper
was been discussed 1. The fixed length of SSNs allows us
to write the function with just two loads, as seen in Lines
03 and 05 of Figure Figure 4. The fact that the digits can
be represented with only four bits lets us have a bijection
of 11-byte strings to 8-byte integers. The constant bits are
discarded by the shift operation in Line 06. Finally, the fact
that two of the characters (the dots) are constant substrings
lets us disregard them when performing the shift and the
addition in Line 06.

size_t _hash(char* ptr, size_t len, size_t seed) {
 size_t hash1 = 0;
 std::memcpy(&hash1, ptr, sizeof(size_t));
 size_t hash2 = 0;
 std::memcpy(&hash2, (char*)ptr + 3, sizeof(size_t));
 size_t hash3 = hash2 << 4;
 size_t hash4 = hash1 + hash3;
 return hash4;
}

01
02
03
04
05
06
07
08
09

ptr ==

0 1 2 3 4 5 6 7 8 9 A

hash1 ==

0 1 2 3 4 5 6 7

hash2 ==

3 4 5 6 7 8 9 A

hash3 ==

3 4 5 6 7 8 9 A

hash4 ==

3 5 7 9 B D F 11

0 1 2 3 4 5 6 7 8 9 A

0 1 2 3 4 5 6 7

3 4 5 6 7 8 9 A

4 5 6 7 8 9 A 0

4 6 8 A C E 10 7

Copy the eight
most significant
bytes of ptr
Copy the eight
least significant
bytes of ptr
Shift hash2 four
bits to the left, to
pair up const and
non-const bits.
Add up const and
non-const bits.

Figure 4.Handwritten version of a hash function specialized
for US Social Security Numbers. The figure shows values
separated in groups of four bits. Gray boxes represent groups
of four constant bits (the upper four bits of ASCII digits). Dark
gray boxes represent non-constant bits. To build a bijection
between strings and 64-bit numbers, this hash function splits
the key into two 64-bit words, shifts left four bits in one of
these words, and adds them up; hence, summing up constant
and non-constant bits.

3 Automatic Specialization
Sepe provides users with two different interfaces to create
hash functions. Users can generate specialized hashes by
feeding Sepe with regular expressions or with examples of
keys. Example 3.1 illustrates these two approaches. As the
example shows, users synthesize hash functions with only
one line of command. Generation via examples produces a
1See discussion at https://www.reddit.com/r/Compilers/comments/1alc94w/
automatic_specialization_of_hash_functions/.

https://github.com/orlp/polymur-hash
https://www.reddit.com/r/Compilers/comments/1alc94w/automatic_specialization_of_hash_functions/
https://www.reddit.com/r/Compilers/comments/1alc94w/automatic_specialization_of_hash_functions/

Renato B. Hoffmann, Leonardo G. Faé, Dalvan Grieber, Xinliang David Li, and Fernando MagnoQuintão Pereira

regular expression; hence, Sepe’s second approach is essen-
tially an abstraction layer built over the first one. Section 3.1
explains how Sepe infers regular expressions out of exam-
ples of keys. Section 3.2, in turn, explains how these regular
expressions guide Sepe’s code generation engine.

Example 3.1. Figure 5 (a) shows the command line that
we can use to produce hash functions for IPv4 keys of fixed
length. The command in Figure 5 (b) will produce the same
hash functions; however, instead of passing a regular expres-
sion to Sepe, this command feeds it with a file containing
examples of keys. Either one of these two commands gen-
erates two hash functions. Figure 5 (c) shows the signature
of one of these functions, and the body of the other. Finally,
Figure 5 (d) shows how either of these two functions can be
incorporated into typical STL code.

struct synthesizedPextHash {
 // Omitted for brevity in this example. See the
 // rest of this section for a complete example.
};

// Simpler hash providing a baseline for efficiency:
struct synthesizedOffXorHash {
 size_t operator()(const std::string& key) const {
 const size_t h0 = load_u64_le(key.c_str());
 const size_t h1 = load_u64_le(key.c_str() + 7);
 return h0 ^ h1;
 }
};

keysynth "$(./bin/keybuilder < file_with_keys.txt)"

make_hash_from_regex.sh "(([0-9]{3})\.){3}[0-9]{3}"

(a)

(b)

(c)

(d) void yourCppCode(void){
 std::unordered_map
 <std::string, int, synthesizedOffXorHash> map;
 map["255.255.255.255"] = 42;
 // ...
}

Figure 5. Sepe’s getting started tutorial. See Example 3.1.

3.1 Creating Regular Expressions
The creation of hash functions from examples of keys re-
quires converting these keys into a regular expression that
recognizes them. The regular expression cannot be too con-
servative; otherwise, Sepe could simply output ‘.*’ for any
key. It cannot be too specific either, for we want to hash
keys that are not in the set of examples. As a compromise,
we identify regular expressions via a semilattice of bit pairs,
which Definition 3.2 formalizes:

Definition 3.2 (The Quad-Semilattice). Let 𝛽 = {00, 01, 10,
11}∪{⊤} be the set of 4 quad numbers plus an extra element
⊤. If 𝑏0, 𝑏1 ∈ 𝛽 , then the semilattice L = ⟨𝛽,∨⟩ is such that
𝑏0 ∨ 𝑏1 = 𝑏0, if 𝑏0 = 𝑏1, or ⊤ otherwise.

Theorem 3.3. ⟨𝛽,∨⟩ is a semilattice.

Proof: We must show that (i) ∨ determines a partial order in 𝛽 ;
and (ii) 𝑏 ∨ ⊤ = ⊤.

i: we define ≤ as follows: 𝑏0 ≤ 𝑏1 if 𝑏0 ∨𝑏1 = 𝑏1. Thus, 𝑏 ≤ ⊤
and 𝑏 ≤ 𝑏, for any 𝑏 ∈ 𝛽 . If 𝑏0 ≠ 𝑏1 ≠ ⊤; then 𝑏0 and 𝑏1 are
not comparable.

ii: Follows from case analysis on the elements of 𝛽 . □

Given a set of𝑚 keys S, we define the regular expression
𝑟 that recognizes every key in S as 𝑓 = 𝑐0𝑐1 . . . 𝑐𝑛−1, where
𝑐𝑖 = 𝑠1 [𝑖] ∨ 𝑠2 [𝑖] ∨ . . . ∨ 𝑠𝑚 [𝑖]. Each 𝑠 𝑗 ∈ S, 1 ≤ 𝑗 ≤ 𝑚,
such that 𝑘 𝑗 [𝑖] is the 𝑖𝑡ℎ bit pair in 𝑘 𝑗 , and 𝑛 is the length, in
bit pairs, of the largest key. If a given key 𝑠 𝑗 contains fewer
than 𝑖 bit pairs, we let 𝑠 𝑗 [𝑖] = ⊤. Example 3.4 illustrates the
process of producing a regular expression.

Example 3.4. Lets us assume we are building a regular ex-
pression that describes airport codes, such as those assigned
by the International Air Transport Association (IATA). Fig-
ure 6 shows three keys, plus their ASCII and quad represen-
tations. Figure 6, on the bottom, also shows the least upper
bound of these three keys, according to Definition 3.2. The
least upper bound of eight of the bit pairs is the top element,
whereas the remaining four are either 01 or 00. Lets us as-
sume that we are also hashing ICAO airport code, which have
four letters. In this case, the missing fourth letter in the IATA
code would be treated as four top elements. We would have,
for instance, 𝐽 𝐹𝐾 ∨ 𝐿𝑎𝑋 ∨𝐺𝑅𝑢 ∨ 𝑅𝐽𝑇𝑇 = 0100⊤201⊤301⊤7,
where ⊤𝑖 is the sequence of 𝑖 occurrences of the top element.

000110101000011000110010

??????10??????10????0010 TTTTTTTT

101011100100101011100010

JFK (74,70,75)

LaX (76,97,88)

GRu (71,82,117)

J(74) F(70) K(75)

L(76) a(97) X(88)

G(71) R(82) u(117)

∨

∨

JFK∨LaX∨GRu
=

110100100110001001010010

Figure 6. The join operation on the quad-semilattice.

Rationale. The quad-semilattice of Definition 3.2 groups
bits in pairs, with the goal of identifying constant bits within
keys. Any other granularity that is a power of two would
fit the purpose of the optimizations to be discussed in Sec-
tion 3.2. We opted to use bit pairs, because bit pairs are
sufficiently expressive to identify constant bits in three im-
portant subsets of ASCII characters: digits, lower-case letters
and upper-case letters. The lattice of bit pairs identifies four
constant bits in digits, and two constant bits in letters (the
first bit pair). Example 3.5 supports these observations.

Example 3.5. The keys used in Example 3.4 indicate that
the four upper bits of keys (0100) are constants. These bits
remain 0100 in Figure 6 because the examples of keys in that
position use only upper-case ASCII characters (‘J’, ‘L’, ‘G’
and ‘J’), which share that common four-bit prefix. However,

Automatic Synthesis of Specialized Hash Functions

one lower-case ASCII character would show that only the
first two bits (01) are invariant for keys involving lower and
upper-case characters. In this example, the shortest sequence
of constant bits is two.

Had we used a coarser granularity in Example 3.5, such as
hexadecimals, to group bits, then we would miss the fact that
the first quad of every ASCII upper case letter is invariant2.
As explained in Section 3.1, users of Sepe can create hash
functions from regular expressions, or from examples of keys.
In the latter case, users must use good sets of examples. A
good set of examples contain, for each quad, every possible
combination of bits that is possible at that position of a key,
as Example 3.6 explains.

Example 3.6. A set of good examples to describe fixed-
length IPv4 keys in the 𝑑𝑑𝑑.𝑑𝑑𝑑.𝑑𝑑𝑑.𝑑𝑑𝑑 format requires
each one of the𝑑 digits to change at least once. Two examples
are already enough to meet this requirement, such as an IPv4
address with just 0s (ASCII(‘0’)=00110000) and another with
just 5s (00110101). For URLs containing upper/lower letters
and digits, two examples would also be enough to exercise
all the possible variations of quads, such as a sequence of
‘E’s (01000101), and a sequence of ‘0’s (00110000).

3.2 Code Generation
The code generation phase of Sepe leverages the three con-
straints that Figure 3 highlights to synthesize optimized hash
function, and follows the sequence of actions that Figure 7
specifies. These constraints do not need to occur together to
enable specializations. The occurrence of any combination
of them already permit the manifestation of the different
optimizations that the rest of this section describes. The rest
of this section discusses each part of Figure 7 in more details.

def synthesize(key):

 ranges = parseRanges(key)

 offsets = ignoreConstantSubsequences(ranges)

 masks, shifts = calculateMasks(key,offsets)

 hashables = removeConstBits(masks,shifts,offsets)

 hashFunc = unrollSequences(hashables)

 return hashFunc

01

02

03

04

05

06

07

08

09

10

Section 3.2.1

Section 3.2.3

Section 3.2.2

Figure 7. Overview of the three phases that are present in
Sepe’s code generator.

3.2.1 Constant Subsequences. The regular expressions
created after the Algorithm discussed in Section 3.1 might
include constant words. We call a constant word a continu-
ous sequence of quads that is equal or greater than the size
2mischaracterizing variable bits as constants will not lead the code generator
of Section 3.2 to produce incorrect hashes; however, mischaracterization
might lead to the generation of hashes with higher collision rates.

of the minimum word that can be addressed in a given archi-
tecture. Constant words do not contribute to differentiating
the hash codes of distinct keys. Sepe’s code generator avoids
loading constant sequences of word that exceed the size of
the target architecture’s vector lane. To this end, we build a
skip table: an array with offsets to skip when computing the
hash. Example 3.7 illustrates this approach.

Example 3.7. Function h1, in Figure 8 is a specialization
of the general implementation hash pattern earlier seen
in Figure 1. For simplicity, we have replaced hash-specific
operations with two placeholders: initialize_hash and
update_hash. In this example, we assume that keys follow
the format “https://example.com/src?ssn=ddd.dd.dddd
&name=. . .” Thus, keys contains only two parts that are not
constant: the social security number (ddd.dd.dddd) and the
name field. Figure 9 shows the words that considered and
skipped in a particular example of key.

size_t h1(const char* ptr, size_t len, size_t seed,

 const size_t* skip, size_t sk_len) {

 size_t hash = initialize_hash(len, seed);

 ptr = ptr + skip[0];

 const char* end = ptr + len;

 for(size_t c = 1; c <= sk_len; ++c) {

 hash = update_hash(hash, load_u64(ptr));

 ptr += skip[c];

 }

 while(ptr < end) {

 hash = update_hash_u8(hash, ptr);

 ptr++;

 }

 return hash;

}

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Use the skip table to jump
over words that only
contain constant quads

Figure 8. Synthetic hash function that skip constant subse-
quences of bytes.

https://example.com/src?ssn=ddd.dd.dddd&surname=John+Smith

16832ptr += skip

Figure 9. Example of skip table. The gray tabs mark the
words that will be considered when building the hash code.
The white tabs highlight words that will be skipped.

3.2.2 Fixed-Length Sequences. If keys have fixed length,
we avoid iterations, and load words directly outside the main
loop. If the key contains constant subsequences of bytes, then
we can avoid loading these words without the need to use
the skip table of Section 3.2.1. Therefore, this combination of
constant subsequences and keys of fixed length essentially
lets us apply partial evaluation on the code earlier discussed

Renato B. Hoffmann, Leonardo G. Faé, Dalvan Grieber, Xinliang David Li, and Fernando MagnoQuintão Pereira

in Example 3.7. Example 3.8 illustrates this process of code
generation.

Example 3.8. Lets simplify the keys seen in Example 3.7 by
removing the name field. In other words, lets assume keys
with the format: https://example.com/src?ssn=ddd.dd.dddd.
In this case, Figure 10 shows the hash function that would
be synthesized by our code generation approach. Notice that
function h2 in Figure 10 loads overlapping bytes, e.g., ptr
and ptr + 3 share five bytes.

size_t h2(const char* ptr, size_t len, size_t seed) {

 size_t hash = initialize_hash(9, seed);

 hash = update_hash(hash, load_u64(ptr));

 hash = update_hash(hash, load_u64(ptr+3));

 return hash;

}

01

02

03

04

05

06

Figure 10. Synthetic hash function that processes fixed-
length keys in the format ddd.dd.dddd.

Example 3.8 shows that our synthetic hash functionsmight
use words with overlapping bits when generating code for
fixed-length sequences. Overlapping happens when the con-
stant part of a sequence of bytes is not a multiple of the
machine word (eight bytes in Example 3.8). We opted for
loading only non-constant sequences when the length of
keys is fixed. Thus, the last load of a non-constant sequence
of 𝑛 bits always starts at position 𝑛 − 8.

3.2.3 Constant Bits. Many computer architectures pro-
vide instructions that perform the parallel extraction of bits
from a source operand. A typical example is the x86’s pext in-
struction, or the Aarch64’s bext instruction. This instruction
employs a mask to selectively extract bits from the source
operand. These bits—which can be non-contiguous—will be
stored into the contiguous low-order bit positions in the des-
tination register. The remaining upper bits of the destination
register are zeroed. Figure 11 uses pseudo-code to explain the
semantics of bit extraction. Bit extraction, as implemented
via pext-like instructions is fast. For instance, pext’s latency
varies from 3 to 20 cycles on modern x86 CPUs [6].

Example 3.9. Continuing Example 3.8, Figure 12 shows a
hash function synthesized for keys that represent social secu-
rity numbers. The twomasks created at Lines 04 and 05 cover
the two words necessary to load an 11-byte SSN number in
the format ddd.dd.dddd. Because the non-constant part of
the key is formed by numbers, only the less significant four
bits of each digit vary. Consequently, pext is able to create
a bijection from keys to 32 bit values.

4 Empirical Evaluation
This section evaluates the following research questions:

size_t _pext_u64(size_t src, size_t mask) {

 size_t dst = 0;

 for (u8 m = 0, k = 0; m < 64; ++m) {

 if (mask[m]) dst[k++] = src[m];

 }

 return dst;

}

01

02

03

04

05

06

07

??????10??????10????0010 0 0 0 0 1 0 1 1 TTTTTTTTquad TT

0 F F 0 C F C 0mask

Figure 11. Parallel bit extraction.We use the quads produced
in Section 3.1 to guide the generation of the extraction mask,
as shown on the top of the figure.

size_t h3(const char* ptr, size_t len, size_t seed) {

 size_t hash = initialize_hash(9, seed);

 size_t mk0 = 0x0f000f0f000f0f0f;

 size_t mk1 = 0x0f0f0f0000000000;

 size_t hashable0 = _pext_u64(load_u64(ptr), mk0);

 size_t hashable1 = _pext_u64(load_u64(ptr+3), mk1);

 size_t shift1 = hashable1 << 52;

 hash = update_hash(hash, hashable0);

 hash = update_hash(hash, shift1);

 return hash;

}

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Step 1: define the mask based on the constant quads:

Step 2: compress bits using masks and selective loading:

Step 3: shift significant bits as far to the left as possible:

Step 4: calculate and return the final hash code:

Figure 12. A bijection from SSN strings to 32-bit values
created via x86’s pext instruction.

RQ1: How does the running time of the synthetic hash
functions compare with the running time of functions
typically used in standard libraries?

RQ2: How do the synthetic hash functions compare
with standard functions in terms of collision count?

RQ3: What is the distribution of hash codes of the syn-
thetic functions, and how does this distribution com-
pare with the distribution of standard hash functions?

RQ4: How does the behavior of the hash functions vary
across architectures considering x86 and aarch64, in
terms of running time and code size?

RQ5: How does the keys’ distribution impact the hash
function’s behavior?

RQ6: What is the asymptotic complexity of the synthe-
sis of the optimized hash function?

RQ7: How does Sepe behave with hashing structures
that stress out its worst-case scenarios, namely, struc-
tures indexed by the most-significant key bits?

These questions are evaluated in a commodity environment,
which we describe in the rest of this section.
Hardware: Experiments evaluated in this section were per-
formed on amulticore server containing two Intel(R) Xeon(R)

Automatic Synthesis of Specialized Hash Functions

Silver 4210 2.20GHz processors, totaling 20 physical cores
with 40 threads and 140 GB of RAM.
Software: The experimental setup runs on Linux Ubuntu
Server 20.04 (kernel 5.4.0-174-generic). Programs are written
in C++17 and are compiled with gnu compiler version 10.5
with -O2 optimization flag. The choice of optimization level,
in this case, is arbitrary: the results reported in this section
remain the same if we compile the codes with clang -O3.
Synthetic Hash Functions: We have implemented four
families of hash functions that use the strategies discussed in
this paper. These functions gradually incorporate the three
techniques mentioned in Section 3.2. In increasing order of
complexity, the functions are:

Naive: Applies an xor-based hash operation on all the
key’s bytes, in chunks of 8 bytes at a time. This func-
tion explores the fixed-length constraint to exercise
the optimizations mentioned in Section 3.2.2.

OffXor: Same as naive, but only loads the bytes that
do not repeat among the keys. In other words, these
functions implement the remove-common-characters
strategy of Section 3.2.1.

Aes: Same as offxor, but combines the bytes using an
AES encode instruction (aesenc in x86 and AESE in
aarch64) instead of xor. The instruction is slower, but,
being a cryptographic function, shows better distribu-
tion properties.

Pext: Same as offxor, but removes common bits, as ex-
plained in Section 3.2.3. After extracting the relevant
bits, it shifts them to ensure that the entirety of the 64-
bit range is used. The final hash is computed similarly
to OffXor.

Baseline Hash Functions: We compare the synthetic func-
tions with the following implementations of hash functions:

STL: the default hash function used in the implementa-
tion of the Standard Template Library [12].

Abseil: the hash function used in the Google Abseil
Library [21].

FNV: another hash function implemented in the Stan-
dard Template Library [11].

City: the hash function from Google specialized for
string keys [20].

Gpt: the hash function generated by ChatGPT 3.5 using
a specific prompt for each key. The prompts are avail-
able in this paper’s repository (removed due to blind
review)3.

3An example of prompt used to synthesize a hash for MAC addresses is:
“For a hash function, assume that keys are MAC, always in the format
‘XX:XX:XX:XX:XX:XX’, where all characters are hexadecimal. The ’:’ char-
acter is constant, so you can ignore them in your hash function. The fixed
key size is 17 characters. The code is C++, and the keys are std::strings.
Do not use std::hash. Assume you do not need to assert key format. Pro-
duce an optimized hash function for this specific case with an unrolled for
loop, and also consider that the constant character is always the same and
in the same position.”

Gperf: function synthesized by GNU perfect hash func-
tion generator (gperf) using 1000 random keys [23].

Benchmarks: Experiments are evaluated by a driver: a pro-
gram that generates keys and operates on them, using some
data structure. An “experiment” is a parameterization of the
driver. The driver supports the following parameters:

Structure: Operations can be performed on the follow-
ing data structures:
• std::unordered_map;
• std::unordered_set;
• std::unordered_multimap;
• std::unordered_multiset.

Distribution: Keys are generated either on ascending
order, or following a uniform or normal distribution.

Affectation: An “affectation” refers to the process of
generating a key and subsequently performing an
insertion, removal, or search operation on it. Experi-
ments always run 10000 affectations.

Spread: Experiments use either 500, 2000 or 10000 keys.
Mode: The execution mode is either batched or inter-

weaved. The batched executionmode runs all the oper-
ations in batches, starting with insertion, followed by
searches and eliminations. The interweaved execution
first runs 50% of the insertions, and then randomly
interweaves searches, insertions and eliminations in
the following way:
1. Generate a key 𝑘 , drawn from a given distribution;
2. With probability 𝑃𝑖 , inserts 𝑘 into the hash table;
3. With probability 𝑃𝑠 , searches 𝑘 into the hash table;
4. With probability 1− (𝑃𝑖 + 𝑃𝑠), removes 𝑘 from the

hash table.
Only three combinations of probabilities are allowed:
(𝑃𝑖 , 𝑃𝑠) ⊂ {(0.7, 0.2), (0.6, 0.2), (0.4, 0.3)}.

Keys: we work with eight different types of keys:
SSN (\d{3}-\d{2}-\d{4});
CPF (\d{3}\.\d{3}\.\d{3}-\d{2});
MAC (([0-9a-fA-F]{2}-){5}[0-9a-fA-F]{2});
IPv4 ((([0-9]{3})\.){3}[0-9]{3});
IPv6 (([0-9a-f]{4}:){7}[0-9a-f]{4});
INTS ([0-9]{100});
URL1 constant URL with 23 characteres, plus the

suffix [a-z0-9]{20}\.html;
URL2 constant URL with 36 characteres, plus the

suffix [a-z0-9]{20}\.html;
By varying these parameters, we obtain 144 experiments,
each consisting of 10000 affectations. We calculate geometric
means and Mann-Whitney P-tests using ten samples—no
sample is discarded, e.g., to warm the driver up. “Aggregate
results” consist of averages of every possible parameteriza-
tion of the driver for a given hash function for a total of 144
experiments; each experiment sampled ten times; each sam-
ple consisting of 10000 affectations. Thus, each one of the ten
hash functions considered in this section runs 10000×10×144

Renato B. Hoffmann, Leonardo G. Faé, Dalvan Grieber, Xinliang David Li, and Fernando MagnoQuintão Pereira

times in order to produce an aggregate result. While fiddling
with this experimental setup, we have tried more affecta-
tions (up to one million); however, we have not observed any
difference from the results that we report using only 10000.

4.1 RQ1 – Running Time
Section 3 describes code-generation techniques that seek to
produce fast implementations of hash functions. This sec-
tion evaluates the quality of these functions in terms of their
running speed. We measure speed via two methodologies,
which we call B-Time and H-Time. The latter considers
only the running time of the hash function, whereas the
former also considers the time it takes to actuate on the data
structure, either via insertions, searches, or eliminations.
Thus, while H-Time is only measuring the relative speed
of hash functions, B-Time is also measuring the impact of
the hash on the overall behavior of data structures such as
std::unordered_set and std::unordered_map. Through-
out this Section, we use geometric means to obtain a value
representing an entire group of experiments.

Discussion. Figure 13 shows aggregate results produced
with eight different hash functions. Each box plot contains
1440 experiments. Table 1 shows absolute geometric mean
values of these experiments. The Gperf function, which ap-
pears in Table 1, has been excluded from Figure 13 because
it is two orders of magnitude slower than all other functions.

Abse
il

Ae
s

City FN
V Gpt

Naiv
e

OffX
or Pex

t
ST

L

0.004

0.006

0.008

0.010

Ex
ec

ut
io

n
Ti

m
e

(s
)

Figure 13. Boxplot of the execution time of different hash
functions using 1440 experiments. Green triangles represent
averages; middle lines, medians. Considering STL hashes, the
slowest experiment runs on approximately 0.0044 seconds;
the fastest runs in approximately 0.0026 seconds.

B-Time Analysis: The four synthetic hash functions
(Aes, Naive, OffXor, and Pext) outperform the other imple-
mentations, including the standard STL hash.Mann–Whitney
U tests show that there is a significant statistical difference

between our synthetic functions and STL. Comparing syn-
thesized functions, OffXor and Naive are statistically equiv-
alent (p-value 0.51), and faster than Pext. City and STL are
also statistically equivalent with p-value 0.44. Gperf is the
outlier, running more slowly than the other functions. Feed-
ing it with 1000 input keys causes it to generate a large
lookup table, severely affecting its performance. If we take
the geometric mean of all the aggregate results, then we im-
proved performance over STL by 5.01%. If we examine each
key type individually, we get performance improvements
ranging from 3.78% to 9.5% for MAC/SSN and URL1, respec-
tively. These numbers (B-Time) include not only hashing
time, but also the time to update data structures; hence, these
results are affected by three factors:

1. Hashing speed (H-Time), the time that the hash func-
tion takes to convert keys to 64-bit integers;

2. Collision rate, as more collisions slow down data re-
trieval;

3. Data structure implementation, which accounts for
how the data structure is traversed, resized and up-
dated with new keys.

Table 1. Performance comparison between different hash
functions using a normal key distribution. B-Time (𝑚𝑠):
Geometric mean execution time for benchmark, consider-
ing insertion, elimination, and search time. H-Time (𝑚𝑠):
Total execution time of 10,000 activations of the hash func-
tion. B-Coll: Geometric mean collisions per bucket of the
benchmark, considering 10,000 keys. T-Coll: Total number
of collisions per hash function, considering 10,000 keys.

Function B-Time H-Time B-Coll T-Coll
Abseil 4.86 1.816 48.89 0
Aes 3.04 0.063 49.21 9
City 3.16 0.128 49.17 0
FNV 3.70 0.599 49.06 0
Gperf 12.71 0.045 55.87 55502
Gpt 3.22 0.171 49.47 7865
Naive 3.04 0.041 50.46 12
OffXor 3.03 0.037 50.67 12
Pext 3.03 0.050 49.42 0
STL 3.19 0.155 49.24 0

H-Time Analysis: In an STL Hash Map container, the
time hashing a key is relatively small compared to all other
operations and container-related logic. Analyzing H-Time
allows for effectively observing the difference in purely hash-
ing time. In B-Time, the difference betweenOffXor and STL
is 5.01%, whereas the H-Time difference between the two is
418%. A similar pattern is seen for all of our synthesized func-
tions. Comparing Aes with City, we get 203% performance
improvements. Another observation is that Gperf has high

Automatic Synthesis of Specialized Hash Functions

B-Time but lowH-Time since the actual hashing operation
is quite efficient. Still, collisions are frequent; hence, Gperf’s
B-Time is high.

4.2 RQ2 – Collision Count
Collisions happen whenever two different strings yield the
same hash code. The collision rate of a hash function is
given by the ratio between collisions and hashes. Higher
collision rates incur extra operations when interacting with
the data. The collision rate depends on how the hash func-
tion distributes keys over hash codes and on how the data
structure stores keys. In this section, we are concerned with
the latter. In Section 4.3, we examine the hash function’s
distribution independently from the container. STL’s hash-
indexed containers divide data into buckets. Containers may
place different keys inside the same bucket, even though
they yield an entirely different hash. To count collisions in
this case, we iterate over the buckets logging the number of
keys inside the same bucket.

Abse
il

Ae
s

City FN
V

Gpe
rf Gpt

Naiv
e

OffX
or Pex

t
ST

L
0

250

500

750

1000

1250

1500

Co
llis

io
n

Co
un

t

Figure 14. Collision count of the Hash Functions.

Discussion. Wedistinguish two types of collisions: bucket
and hash (total) collisions. In the former case, we are count-
ing how often two keys ended up stored in the same bucket
of a data structure. In the latter, we are counting how often
two different keys generated the same 64-bit hash code.

BucketCollisions: Figure 14 compares the collision count
of the different hash functions. Column B-Coll in Table 1
reports the absolute number of bucket collisions. According
to Mann-Whitney U tests, there is no meaningful statistical
difference between our generated hash functions and STL’s.
Using STL containers, there is no statistically significant dif-
ference in bucket collisions (B-Coll) across hash functions,
except for GPerf, which has a much higher collision rate.
Total Collision Count: Column T-Coll in Table 1 re-

ports the real number of collisions generated by each Hash

function. The Gperf function causes the highest number
of collisions. This observation explains why it also has the
highest B-Time despite having low H-Time. The high colli-
sion rate is due to the imperfect lookup table, which could
be improved if the function is generated using every single
possible input key. Gpt, in turn, despite having high T-Coll,
has lower B-Time than Gperf. Although Gpt hashes cause
7865 collisions, 7857 of them are due to IPv4 keys. This con-
centration does not affect much Gpt’s geometric means. It
is also worth mentioning that Aes has 9 T-Coll solely due
to keys that are less than 16 bytes in size. Considering our
synthetic hash functions, Pext always generates a bijection
for key types that have equal or less than 64 relevant bits.
For example, a 16 character integer in string format is a bi-
jection with our Pext implementation. Even though we have
key-types with 400 relevant bits (INTS), it still achieved zero
T-Coll despite not being a bijection in these cases.

4.3 RQ3 – Hash Uniformity
The functions that Sepe generate are not cryptographic. This
fact becomes apparent once we analyze the distribution of
hashes over the domain of 64-bit integers. Some of our syn-
thetic functions might end up representing the hash of a
string that encodes a number as that number itself4. Such
is the case, for instance, of Pext, when applied over social
security numbers. Therefore, the distribution produced by
Pext (or any other Sepe function) might be skewed if this
function runs over non-uniform data. This section assesses
the uniformity of our hash functions. To this end, we adopt
the following methodology:

1. Generate 100,000 keys from one of the allowed dis-
tributions: incremental, uniform, or normal. The in-
cremental distribution produces keys sorted by their
ASCII values. For example, in case of SSNs, the keys
would be, in ascending order: ‘000-00-0000’, ‘000-
00-0001’, ‘000-00-0002’, and so on.

2. Save all the hashes in a sorted vector 𝑣 .
3. Build a histogram ℎ with the values stored in 𝑣 .
4. Use the Chi-Square Goodness-of-Fit test to compare
ℎ to a perfect distribution.

Discussion. Table 2 summarizes the uniformity distri-
bution analysis. The Chi-Test values are normalized with
respect to the STL results. The closer the normalized values
are to 0, the closer the distribution of hash values is to a per-
fect uniform distribution. Our synthetic hash functions are
considerably less uniform than STL, City, FNV, and Abseil.
Using the pext instruction to extract only the relevant bits

4Notice that functions like Pext embody the very nature of Kraska et al.’s
learned index structures. Quoting Kraska et al.: “If the goal is to build a
highly-tuned system to store and query ranges of fixed-length records over a
set of continuous integer keys one would not use a conventional B-Tree index
over the keys since the key itself can be used as an offset, making it an𝑂 (1)
rather than𝑂 (ln𝑛) operation to look-up any key.” [15]

Renato B. Hoffmann, Leonardo G. Faé, Dalvan Grieber, Xinliang David Li, and Fernando MagnoQuintão Pereira

improves results for incremental key distributions. Abseil,
City, FNV, and STL have similar uniformity between them-
selves and are always better than the synthesized versions.
Gpt is only competitive with our functions for uniform key
distributions; in particular, Gpt only achieved a good distri-
bution for MAC address keys, where it achieved a statistically
uniform distribution (p-value > 0.05). If we exclude key
types with fewer than 16 bytes (CPF and SSN), the Chi-test
results for a normal distribution with Aes are 1.03; hence,
very similar to STL. This behavior happens because Aes re-
quires two 16 byte values; thus, we replicate the key to get a
hash, which does not yield a good distribution.

Table 2. Hash uniformity distribution test according to dif-
ferent key distributions. All values are Chi-test normalized
by the respective STL version. The closer to 0, the more uni-
form the distribution.

Function Inc Normal Uniform
Abseil 1.02 0.99 1.01
Aes 1365.32 2506.61 2548.34
City 1.01 0.98 1.00
FNV 17.20 0.99 1.01
Gperf 2538.36 8638.28 8817.40
Gpt 2568.49 6205.49 3784.17
Naive 63.44 2531.19 3821.92
OffXor 59.29 2532.35 3822.70
Pext 7.63 2512.13 1303.73
STL 1.00 1.00 1.00

4.4 RQ4 – Architectural Impact
The standard library’s hash functions run on many different
computer architectures. Therefore, it is essential to consider
more than one architecture when comparing them with our
generated hash functions. This section analyzes running
time and code size differences an aarch64 processor; hence,
providing the reader with some perspective on how Sepe
functions behave when running on an architecture different
than x86. Results presented in the rest of this section were
collected on a Jetson device with a quad-core Cortex-A57
CPU (1479 MHz), a 128-core NVIDIA Maxwell GPU, and 4
GB RAM. The machine does not have support for the bext
instruction (the aarch64 equivalent to pext), and thus the
Pext family of functions were left out.

Discussion. The performance results for execution in an
aarch64 machine are displayed in Figure 15. Comparing it
to the x86 results in Figure 13, the slower hash functions
(Abseil and FNV) have improved relatively to the others.
Our synthetic functions,Aes,Naive andOffXor, remain the
fastest. Overall, the tests have higher variability for different
keys than their x86 equivalents. For all keys, Mann–Whitney
U reveals no significant statistical difference between Naive

and OffXor. Also for all keys, there is a significant dif-
ference between them and the other hash functions. Aes
is sometimes equivalent to Naive and OffXor, and other
times slower. These results show that using the specialization
strategies presented in Section 3, we can implement more
performant functions even on highly disparate hardware
where we cannot use specialized hardware instructions.

Abse
il

Ae
s

City FN
V Gpt

Naiv
e

OffX
or ST

L

0.005

0.010

0.015

0.020

0.025

Ex
ec

ut
io

n
Ti

m
e

(s
)

Figure 15. The execution time of different hash functions
on an aarch64 architecture. Boxes aggregate the B-Time of
1440 experiments. Thus, these results include the time to
affect the data structure, in addition to hashing time.

4.5 RQ5 – Key Distribution Impact
Compared to linear arrays that position subsequent data
physically next to each other in the memory hierarchy, hash-
indexed containers sacrifice data locality for fixed indexing
time. As a result, subsequent keys may result in far-apart
memory positions. Therefore, this RQ aims to analyze the
impact of key distributions on performance.

Discussion. Table 3 reveals that the key distribution im-
pacts total execution time (BT – short for Bucket Time) and
the total collision count (TC). Regarding collisions of the syn-
thetic hash functions, only Pext achieved 0 collisions across
all key distributions. Regarding bucket time, the Uniform key
distribution yields the fastest execution times. Examining
solely the hashing time, the difference between key distribu-
tions is equivalent to the standard deviation. Therefore, the
difference in bucket time between distributions is due to the
implementation of the STL container.

4.6 RQ6 – Synthesis Complexity
This paper proposes a technique to synthesize hash func-
tions. General program synthesis is a hard problem: many
instances of this problem are undecidable; whereas many
others have exponential complexity [8, Ch.1]. However, this

Automatic Synthesis of Specialized Hash Functions

Table 3. Performance comparison between different hash
functions and Key distributions. BT (𝑚𝑠): Geometric mean
execution time for benchmark, considering insertion, elimi-
nation, and search time. TC: Total number of collisions per
hash function, considering 10,000 keys.

Inc Normal UniformFunction BT TC BT TC BT TC
Abseil 4.86 0 4.86 0 3.11 0
Aes 5.67 6 3.04 9 1.35 9545
City 3.16 0 3.16 0 1.47 0
FNV 3.68 0 3.70 0 2.04 0
Gperf 62.46 54468 12.71 55502 30.59 79903
Gpt 6.68 7493 3.22 7865 1.49 17573
Naive 3.09 9 3.04 12 1.30 0
OffXor 3.06 9 3.03 12 1.30 0
Pext 3.00 0 3.03 0 1.32 0
STL 3.19 0 3.19 0 1.47 0

section presents empirical evidence that the code generation
methodology described in this paper runs in linear time on
the size of the largest key in the set of input examples. We
shall demonstrate that this methodology handles efficiently
keys with up to 214 bytes.

Discussion. Figure 16 shows the results of generating the
Pext hashes for keys of size ranging from 24 to 214, where
keys are sequences of digits without constant subsequences.
Therefore, keys are entirely processed, as we cannot discard
any part of the input using the skip table of Section 3.2.1.
Figure 16 suggests that synthesis follows a linear asymptotic
behavior. Indeed, the smallest Pearson correlation between
synthesis time and problem size is 0.993 for Aes, whereas a
coefficient of 1.0 indicates perfect linear correlation, and 0.0
indicates no correlation. This is within expectations since
our code generation methods only require simple loops over
the representation of a regular expression. The running time
of synthesizing Pext functions grows faster—although still
linearly—due to the cost of printing machine instructions, as
the loop of each Pext function is fully unrolled.

4.7 RQ7 – Worst-Case Scenarios
Unordered STL containers determine the bucket where to
store data by taking the modulo of the hash value with the
current number of buckets. Therefore, even though Sepe
functions might not produce well-distributed hash values,
keys are still likely to be mapped into different buckets, as
Example 4.1 will demonstrate.

Example 4.1. Sepe might generate a hash function for SSNs
that uses the SSN itself as the hash value. Assuming 100
buckets, two successive SSNs will fall into different buckets,
e.g., 123456789 % 100 = 89 and 123456790 % 100 = 90.

24 26 28 210 212 214

Problem Size

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

Sy
nt

he
sis

 E
xe

c
Ti

m
e

(s
)

Aes
OffXor
Pext

Figure 16. Synthesis time vs program size. The smallest
value is 0.000069 seconds; the largest is approximately 0.016
seconds. The three curves show linear behavior (we remind
the reader that the X-axis is logarithmic).

Consequently, despite the poor distribution of Sepe func-
tions (as discussed in Section 4.3), they still exhibit low bucket
collisions (as seen in Section 4.1). However, a different hash-
ing structure could impose a significant burden on Sepe’s
functions. In this section, we explore two such scenarios:
(i) containers that index buckets using the upper bits of the
64-bit hash value; and (ii) keys with fewer than 8 bytes5.

Discussion – Low-Mixing Containers. . To evaluate
Sepe’s behavior with a low-mixing container6, we applied it
to a version of an unordered map where buckets are deter-
mined by 𝑢%𝐵, where 𝑢 counts the most significant bits of
the hash value, and 𝐵 is the number of buckets. For instance,
if 𝑢 is 16, then all 64-bit hash values from 0 to 248 − 1 will be
mapped to the same bucket. Under such conditions, Figure 17
shows the BC (Bucket Collisions) and Figure 18 shows the
TC (True Collisions) of different hash functions.

In this scenario, two of Sepe’s functions, Naive and Of-
fXor, experience an increasing number of bucket and true
collisions. In contrast, the Pext and Aes variants demon-
strate greater resistance. Pext-based functions left-shift up
to five bits with the 0x07 mask. However, Pext-based hash-
ing still shows 7.1x more true collisions than the equivalent
STL hash. These results corroborate the findings from Section
4.3, which indicate that Sepe functions have poor distribu-
tion. Therefore, Sepe should not be used with containers that
discard bits from the hash value when indexing buckets.

5The second scenario cannot occur in practice, as Sepe defaults to the
standard STL function for keys with fewer than eight bytes.
6In the context of this work, a “low-mixing container” is one where the
bucket indexing process relies on only a small portion of the hash value
(e.g., the most significant bits) rather than using the full hash value.

Renato B. Hoffmann, Leonardo G. Faé, Dalvan Grieber, Xinliang David Li, and Fernando MagnoQuintão Pereira

0 16 24 32 48
Hash Bits Shifted Right

49
50
51
52
53
54
55
56
57

Bu
ck

et
 C

ol
lis

io
ns

Aes
Naive
OffXor
Pext
STL

Figure 17. Aggregated Bucket Collisions (BC) when 64 − 𝑋
most-significant bits are used to index buckets. The 𝑋 axis
shows how many least-significant bits are discarded. For
instance, 𝑋 = 48 indicates that only the 64 − 48 = 16 most
significant bits were used to index buckets.

0 16 24 32 48
Hash Bits Shifted Right

0

2000

4000

6000

8000

Tr
ue

 C
ol

lis
io

ns

Aes
Naive
OffXor
Pext
STL

Figure 18. Impact of a low-mixing container on true colli-
sions. The X-axis is defined as in Figure 17.

Discussion – Four-Digit Integers. . The combination
of a low-mixing container that uses most-significant bits
with keys that contain less than eight bytes is the worst
possible case for Sepe. To evaluate our functions under such
constraints, Figure 18 reports bucket and true collisions using
keys formed by four integer digits. If we use only the 32 most
significant bits to choose the bucket, then STL has 18 bucket
collisions and 5,786 true collisions, whilePext has 43 BCs and
9,999 TCs. However, if, instead, we use the 32 least significant
bits, then these two functions behave similarly: Pext has
5,786 true collisions, the same as STL. Again, we emphasize
that Sepe does not produce, by default, hash functions for
keys that contain less than 64 bits.

Discussion – Gradual Specialization. . This section
illustrates one advantage of Pext (or Aes) over the other
hash functions produced by Sepe. As seen in Figure 3 (Page 3),
the sequence Naive → OffXor → Pext represent a gradual
addition of constraints. Except for the low-mixing containers

explored in this section, there is no performance benefit from
using our most constrained function, Pext, over the simpler
OffXor implementation.

5 Related Work
To our knowledge, there are no compilers that generate spe-
cialized code for hash functions tailored to specific input
formats. However, numerous efforts have been made to spe-
cialize the hash indexing data structure (not the hash func-
tion) to allow fast storage and retrieval of elements from
specific datasets. Additionally, the techniques presented in
this paper are influenced by two significant subdomains of
programming language research: program synthesis [16]
and code specialization. In the latter case, our work fits into
the general framework that Muth et al. [18] call “value spe-
cialization”, where knowledge of the data determines the
machine code that a compiler produces. This section pro-
vides an overview of this relevant literature, highlighting
works that share similarities with our approach.

Data Specialization. In 2018, Kraska et al. [15] intro-
duced the notion of “Learned Index Structures (LIS)”. A LIS
is a combination of a data structure (e.g., a B-Tree or a Bloom
Filter) plus a machine-learning guided model that predicts
the position of keys within the structure. In contrast to Sepe,
in the learned model there is no synthesis of hash functions.
Rather, a neural network maps the input data (in Kraska
et al.’s work a fixed-length string) to an interval within the
data-structure where this key is guaranteed to be found.
Kraska et al.’s indexing models have inspired much research;
even allowing, for instance, the specialization of how hash ta-
bles are placed in memory [13]. Nevertheless, further studies
have shown—in the words of Sabek et al. [22]—that: “learned
models can indeed outperform hash functions but only for
certain data distributions and with a limited margin.”
Within the domain of data structure specialization, the

work that is the closest to Sepe is Hentschel et al. [10]’s
Entropy-Learned Hashing. Hentschel et al. constrain hashing
to only high-entropy parts of the data; that is, subsequences
of the data whose contents tend to vary more. Additionally,
Hentschel et al. produces hash tables and bloom filters that
are specialized for these constrained hash functions (which
Hentschel calls “Cerebral Data Structures” [9]). By observing
the set of keys (which are assumed to have fixed length), they
are able to determine subintervals of these byte sequences
that present high and low entropy. Thus, they can hash only
the high-entropy parts of a key, and determine the maximum
capacity of the hash table beyond which they need to rehash
the stored items into a new larger buffer. In contrast to Sepe,
Hentschel et al. do not generate code for hash functions;
rather, the beauty of their work resides on the fact that they
can constrain any well-known hash function to only high
entropy bits.

Automatic Synthesis of Specialized Hash Functions

Bitmask Specialization. There exist code-generation
techniques that specialize cryptographic primitives using
techniques similar to those that we have mentioned in Sec-
tion 3.2.3. For instance, given a high-level description of a
cryptographic routine, Usuba [17] and its extension, Tor-
nado [2] produce a functionally equivalent implementation
that uses bit masks to enhance its security guarantees against
side-channel attacks. The code that Tornado generates is
specialized for a given masking order, which is the num-
ber of masking operations that are applied onto sensitive
data. Similarly, Lif [24] produces code that is secure against
side-channels, specializing it to the set of inputs that are
considered “public”; that is, non-sensitive.

6 Conclusion
This paper has described a code generation technique that
produces hash functions specialized for particular types of
data, namely sequences of bytes with fixed length, or com-
mon substrings or constant bits. These synthetic functions
show very good performance when compared to standard
hash functions available in libraries such as C++ STL or
Google Abseil, sometimes showing speedups of almost 50x
(as seen in column H-Time in Table 1). Nevertheless, al-
though the functions run efficiently, we believe that there
are still many directions along which the approach proposed
in this paper can be improved. In particular, our techniques
specialize hashing, but not storage and retrieval. Thus, we
see room for generating code for specialized data structures.
Furthermore, the the hash operations we synthesize lack
properties such as pre-image and collision resistance, which
are desirable in cryptographic hash functions. We leave the
synthesis of efficient and secure cryptographic hash func-
tions as future work.

Software: The ideas presented in this work have been
implemented as public software, released under the GPL 3.0
license, and available at https://github.com/lac-dcc/sepe.

Acknowledgement
This project is supported by a grant that Google Inc. has gen-
erously donated to UFMG’s Compilers Lab. Fernando Pereira
also acknowledges support from the following research agen-
cies: CNPq (grant 406377/2018-9), FAPEMIG (grant PPM-
00333-18), and CAPES (Edital PrInt). The specialization in
Figure 3 is based on a reddit comment by u/moon-chilled.

References
[1] Austin Appleby. 2008. MurmurHash, First Announcement. https:

//tanjent.livejournal.com/756623.html. Accessed: 2024-03-21.
[2] Sonia Belaïd, Pierre-Évariste Dagand, Darius Mercadier, Matthieu

Rivain, and Raphaël Wintersdorff. 2020. Tornado: Automatic Genera-
tion of Probing-Secure Masked Bitsliced Implementations. In EURO-
CRYPT (Zagreb, Croatia). Springer-Verlag, Berlin, Heidelberg, 311–341.
https://doi.org/10.1007/978-3-030-45727-3_11

[3] Ivan Bjerre Damgård. 1989. A design principle for hash functions.
In CRYPTO (Santa Barbara, California, USA). Springer-Verlag, Berlin,
Heidelberg, 416–427.

[4] Jordan Earls and Sazzad Hissain Khan. 2011. Which hash-
ing algorithm is best for uniqueness and speed? https:
//softwareengineering.stackexchange.com/questions/49550/which-
hashing-algorithm-is-best-for-uniqueness-and-speed. Accessed:
2024-03-21.

[5] César Estébanez, Yago Saez, Gustavo Recio, and Pedro Isasi. 2014.
Performance of the most common non-cryptographic hashfunctions.
Softw. Pract. Exper. 44, 6 (jun 2014), 681–698. https://doi.org/10.1002/
spe.2179

[6] Agner Fog. 2022. Lists of instruction latencies, throughputs and micro-
operation breakdowns for Intel, AMD, and VIA CPUs. https://www.
agner.org/optimize/instruction_tables.pdf. Last updated on 2022-11-
04.

[7] Glenn Fowler, Landon Curt Noll, and Kiem-Phong Vo. 1994. FNV hash
history. http://www.isthe.com/chongo/tech/comp/fnv/index.html. Ac-
cessed: 2024-03-21.

[8] Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. 2017. Program
Synthesis. Found. Trends Program. Lang. 4, 1-2 (2017), 1–119. https:
//doi.org/10.1561/2500000010

[9] Brian Hentschel. 2022. Cerebral Data Structures: Integrating Context
into Data Structure Design and Implementation. Ph. D. Dissertation.
Harvard University.

[10] Brian Hentschel, Utku Sirin, and Stratos Idreos. 2022. Entropy-Learned
Hashing: Constant Time Hashing with Controllable Uniformity. In
Proceedings of the 2022 International Conference onManagement of Data
(Philadelphia, PA, USA) (SIGMOD ’22). Association for Computing
Machinery, New York, NY, USA, 1640–1654. https://doi.org/10.1145/
3514221.3517894

[11] Jakub Jelinek. 2024. Implementation of the FNV hash in the Stan-
dard Template Library. https://github.com/gcc-mirror/gcc/blob/
ee0717da1eb5dc5d17dcd0b35c88c99281385280. File /libstdc++-
v3/libsupc++/hash_bytes.cc, Line 123, Accessed: 2024-03-21.

[12] Jakub Jelinek. 2024. Implementation of the murmur hash in the
Standard Template Library. https://github.com/gcc-mirror/gcc/blob/
ee0717da1eb5dc5d17dcd0b35c88c99281385280. File /libstdc++-
v3/libsupc++/hash_bytes.cc, Line 138, Accessed: 2024-03-21.

[13] Aarati Kakaraparthy, Jignesh M. Patel, Brian P. Kroth, and Kwanghyun
Park. 2022. VIP hashing: adapting to skew in popularity of data
on the fly. Proc. VLDB Endow. 15, 10 (jun 2022), 1978–1990. https:
//doi.org/10.14778/3547305.3547306

[14] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy
Ranganathan, Tipp Moseley, Gu-Yeon Wei, and David Brooks. 2015.
Profiling a warehouse-scale computer. SIGARCH Comput. Archit. News
43, 3S (jun 2015), 158–169. https://doi.org/10.1145/2872887.2750392

[15] TimKraska, Alex Beutel, EdH. Chi, JeffreyDean, andNeoklis Polyzotis.
2018. The Case for Learned Index Structures. arXiv:1712.01208 [cs.DB]

[16] Zohar Manna and Richard J. Waldinger. 1971. Toward automatic
program synthesis. Commun. ACM 14, 3 (mar 1971), 151–165. https:
//doi.org/10.1145/362566.362568

[17] Darius Mercadier and Pierre-Évariste Dagand. 2019. Usuba: high-
throughput and constant-time ciphers, by construction. In PLDI
(Phoenix, AZ, USA). Association for Computing Machinery, New York,
NY, USA, 157–173. https://doi.org/10.1145/3314221.3314636

[18] Robert Muth, Scott A. Watterson, and Saumya K. Debray. 2000. Code
Specialization Based on Value Profiles. In SAS. Springer-Verlag, Berlin,
Heidelberg, 340–359.

[19] M. Naor and M. Yung. 1989. Universal one-way hash functions and
their cryptographic applications. In STOC (Seattle, Washington, USA).
Association for Computing Machinery, New York, NY, USA, 33–43.
https://doi.org/10.1145/73007.73011

https://github.com/lac-dcc/sepe
https://tanjent.livejournal.com/756623.html
https://tanjent.livejournal.com/756623.html
https://doi.org/10.1007/978-3-030-45727-3_11
https://softwareengineering.stackexchange.com/questions/49550/which-hashing-algorithm-is-best-for-uniqueness-and-speed
https://softwareengineering.stackexchange.com/questions/49550/which-hashing-algorithm-is-best-for-uniqueness-and-speed
https://softwareengineering.stackexchange.com/questions/49550/which-hashing-algorithm-is-best-for-uniqueness-and-speed
https://doi.org/10.1002/spe.2179
https://doi.org/10.1002/spe.2179
https://www.agner.org/optimize/instruction_tables.pdf
https://www.agner.org/optimize/instruction_tables.pdf
http://www.isthe.com/chongo/tech/comp/fnv/index.html
https://doi.org/10.1561/2500000010
https://doi.org/10.1561/2500000010
https://doi.org/10.1145/3514221.3517894
https://doi.org/10.1145/3514221.3517894
https://github.com/gcc-mirror/gcc/blob/ee0717da1eb5dc5d17dcd0b35c88c99281385280
https://github.com/gcc-mirror/gcc/blob/ee0717da1eb5dc5d17dcd0b35c88c99281385280
https://github.com/gcc-mirror/gcc/blob/ee0717da1eb5dc5d17dcd0b35c88c99281385280
https://github.com/gcc-mirror/gcc/blob/ee0717da1eb5dc5d17dcd0b35c88c99281385280
https://doi.org/10.14778/3547305.3547306
https://doi.org/10.14778/3547305.3547306
https://doi.org/10.1145/2872887.2750392
https://arxiv.org/abs/1712.01208
https://doi.org/10.1145/362566.362568
https://doi.org/10.1145/362566.362568
https://doi.org/10.1145/3314221.3314636
https://doi.org/10.1145/73007.73011

Renato B. Hoffmann, Leonardo G. Faé, Dalvan Grieber, Xinliang David Li, and Fernando MagnoQuintão Pereira

[20] Geoff Pike and Jyrki Alakuijala. 2024. Implementation of the City-
Hash64 hash function in the Abseil Library. https://github.com/abseil/
abseil-cpp/blob/master/absl/hash/internal/city.cc. Accessed: 2024-03-
21.

[21] Nafi Rouf. 2024. Implementation of Low-Level Hash in the Abseil
Library. https://github.com/abseil/abseil-cpp/blob/master/absl/hash/
internal/low_level_hash.cc. Accessed: 2024-03-21.

[22] Ibrahim Sabek, Kapil Vaidya, Dominik Horn, Andreas Kipf, and Tim
Kraska. 2021. When Are Learned Models Better Than Hash Functions?
arXiv:2107.01464 [cs.DB]

[23] Douglas C. Schmidt, Keith Bostic, and Bruno Haible. 2007. The GNU
perfect hash function generator. https://github.com/rurban/gperf.
Accessed: 2024-03-21.

[24] Luigi Soares, Michael Canesche, and Fernando Magno Quintão Pereira.
2023. Side-channel Elimination via Partial Control-flow Linearization.
ACM Trans. Program. Lang. Syst. 45, 2, Article 13 (jun 2023), 43 pages.
https://doi.org/10.1145/3594736

A Further Analyses
This section explores two extra research questions, using the
same experimental methodology discussed in Section 4. The
two new research questions that we explore are:

RQ8: What is the asymptotic complexity of hashing,
considering our synthetic functions and the different
baseline functions?

RQ9: How does the hash function impact the running-
time behavior of different data structures?

A.1 RQ8 – Hash Functions Complexity
All hash functions generated using the techniques outlined
in Section 3 process inputs one word at a time without back-
tracking. The number of operations performed per word
remains constant. Consequently, we expect that the asymp-
totic complexity of these functions will be linear relative to
the length of the key. This section presents empirical evi-
dence supporting this expectation.

Discussion. Figure 19 shows Pext’s runtime behavior
alongside the other standard hashing functions, as the input
size increases in powers of two. The inputs are the same used
in Section 4.6. All the hash functions exhibit linear behavior,
with the smallest Pearson correlation between problem size
and hashing speed being 0.9979 for Pext. We omit the run-
ning time of the other synthetic functions to avoid cluttering
Figure 19, as these functions are strictly faster than Pext.

A.2 RQ9 – Data Structure Impact
Data structures manipulate and use the generated hashes
differently. Furthermore, they may be more or less sensitive
to variations in the hash functions’ properties. Thus, this sec-
tion examines in more detail the impact of the hash functions
on four data structures from the C++ Standard Template Li-
brary: unordered_map, unordered_set, unordered_multimap
and unordered_mul- tiset.

Discussion. For the sake of space, we only show in this
section the relative performance between the different data

24 26 28 210 212 214

Problem Size

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Ha
sh

 Fu
nc

 E
xe

c
Ti

m
e

(s
)

Abseil
City
FNV
Pext
STL

Figure 19. Hash Functions execution time with increasing
problem sizes. The smallest value is 0.000059 seconds.

U_M
ap

UM_M
ap

UM_Se
t

U_Se
t

0.003

0.004

0.005

0.006
Ex

ec
ut

io
n

Ti
m

e
(s

)

Figure 20. Boxplot of the execution time grouped by Con-
tainer. U represents Unordered, and UM represents Un-
ordered Map.

structures. Figure 20 summarizes these results. The figure
shows that the MultiMap and MultiSet data structures have
higher execution times than Map and Set. TheMulti variants
allow multiple elements mapping to the same key, which
requires another layer of indirection to operate on the data.
Although we do not show it in Figure 20, we have not ob-
served that any particular synthetic hash function benefits
more from specific data structures. Our conclusion is that the
relative performance of these synthetic hash functions does
not depend on the data structure that is used to organize
data, assuming standard implementations of maps and sets.
In other words, the same trends reported in Figures 13 or
Table 1 remain true once we analyze them across separate
data structures.

https://github.com/abseil/abseil-cpp/blob/master/absl/hash/internal/city.cc
https://github.com/abseil/abseil-cpp/blob/master/absl/hash/internal/city.cc
https://github.com/abseil/abseil-cpp/blob/master/absl/hash/internal/low_level_hash.cc
https://github.com/abseil/abseil-cpp/blob/master/absl/hash/internal/low_level_hash.cc
https://arxiv.org/abs/2107.01464
https://github.com/rurban/gperf
https://doi.org/10.1145/3594736

	Abstract
	1 Introduction
	2 Hashing: an Overview
	2.1 Hash Specializations

	3 Automatic Specialization
	3.1 Creating Regular Expressions
	3.2 Code Generation

	4 Empirical Evaluation
	4.1 RQ1 – Running Time
	4.2 RQ2 – Collision Count
	4.3 RQ3 – Hash Uniformity
	4.4 RQ4 – Architectural Impact
	4.5 RQ5 – Key Distribution Impact
	4.6 RQ6 – Synthesis Complexity
	4.7 RQ7 – Worst-Case Scenarios

	5 Related Work
	6 Conclusion
	References
	A Further Analyses
	A.1 RQ8 – Hash Functions Complexity
	A.2 RQ9 – Data Structure Impact

