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L-systems are a mathematical formalism proposed by biologist Aristid Lindenmayer with the aim of simulating
organic structures such as trees, snowflakes, flowers, and other branching phenomena. They are implemented
as a formal language that defines how patterns can be iteratively rewritten. This paper describes how such
a formalism can be used to create artificial programs written in programming languages such as C, C++,
Julia and Go. These programs, being large and complex, can be used to test the performance of compilers,
operating systems, and computer architectures. This paper demonstrates the usefulness of these benchmarks
through multiple case studies. These case studies include a comparison between clang and gcc; a comparison
between C, C++, Julia and Go; a study of the historical evolution of gcc in terms of code quality; a look into
the effects of profile guided optimizations in gcc; an analysis of the asymptotic behavior of the different phases
of clang’s compilation pipeline; and a comparison between the many data structures available in the Gnome
Library (GLib). These case studies demonstrate the benefits of the L-System approach to create benchmarks,
when compared with fuzzers such as CSmith, which were designed to uncover bugs in compilers, rather than
evaluating their performance.

CCS Concepts: • Software and its engineering→ Compilers.

Additional Key Words and Phrases: L-System, Benchmark, Synthesis

1 Introduction

Language processing systems, such as compilers, interpreters and static analyzers are complex
tools whose validation depends on programs written in the target language. However, the number
of available benchmarks for any given compiler is typically limited [39]. To address this limitation,
several tools have been developed to automatically generate test programs [41]. This process,
known as fuzzing [26], is widely used to uncover bugs such as crashes and memory leaks. In the
compiler domain, fuzzers such as Csmith [41] and YARPGen [25] generate random C programs
to stress-test compilers and support static analysis. More recently, fuzzers like Fuzz4All [40] have
leveraged Large Language Models (LLMs) to generate test programs not only for compilers but
also for constraint solvers, interpreters, and other software systems with accessible APIs.

Despite the abundance of program generators [41], existing tools exhibit important limitations.
A key issue is the lack of control over the size of the generated programs. For example, Csmith,
the most widely used C compiler fuzzer, does not allow users to tune the output size. Instead, it
produces programs whose sizes follow a normal distribution. When compiled with clang v9.0.1 at
-O0, these programs contain on average 20,190 LLVM instructions, with a standard deviation of 3,650
and a median of 19,161 instructions [12]. Other fuzzers, such as YARPGen [25], LDRGen [2], and
Orange3 [23], show similar behavior. As a consequence, these tools are ill-suited for performance
evaluation of compiler components such as parsing, semantic analysis, and code generation.

Programs via L-Systems. To overcome this limitation, this paper proposes a methodology for
stress-testing compilers with a focus on performance rather than solely on correctness. Our approach
enables the controlled generation of programs whose size can be precisely tuned by the user. This
makes it possible to construct synthetic code of virtually arbitrary size, constrained only by practical
resources such as generation time and storage space.
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The central insight is that programs often exhibit recursive, self-similar structures, as discussed
in Section 2. For instance, the branches of a control construct (e.g., if-then-else) are themselves
programs that may recursively contain further control constructs. To exploit this property, we intro-
duce a generation technique based on L-systems [24]. Originally developed by Aristid Lindenmayer
to model the growth of biological organisms, L-systems provide a grammar-based framework that
we extend to code generation. This paper shows how families of self-similar programs can be
encoded as L-grammars. Programs are then generated by iterative rewriting, where each resulting
string encodes the blueprint of a program organized around a central data structure such as an
array or a list. As discussed in Section 3, this technique supports multiple programming languages,
yields complex control-flow graphs, avoids undefined behavior, and enables the manipulation of
different data structures.

Summary of Contributions. To demonstrate the benefits of representing program growth with
L-systems, we introduce BenchGen, a multi-language benchmark generator. Section 4 evaluates
BenchGen through seven case studies, including: a comparison between gcc and clang; a com-
parison of Go, Julia, C, and C++; an asymptotic analysis of different components of clang; a
longitudinal analysis of the evolution of gcc; an evaluation of profile-guided optimizations in
clang; a comparison of data structures from GLib; and a comparison between programs generated
by BenchGen and by Csmith. BenchGen is publicly available under the GPL 3.0 license, and has
already been used to generate benchmarks for several languages beyond those discussed in this
paper, including Rust and Vale.

2 L-Systems

An L-system (or Lindenmayer system) is a formal model based on rewriting rules, originally devised
to describe the growth patterns of plants and other fractal-like structures. It comprises an alphabet
of symbols, a set of production rules that define how symbols are transformed, and an initial string
(the axiom) that serves as the starting point. At each iteration, the rules are recursively applied
to the current string, producing increasingly complex sequences. Example 2.1 illustrates how this
formalism operates.

Example 2.1. Figure 1 presents an example of an L-system. The rules used in this system generate
geometric patterns through string rewriting. Starting from the axiom 𝐴, the productions specify
how symbols evolve at each step: 𝐴 → 𝐵 − 𝐴 − 𝐵 and 𝐵 → 𝐴 + 𝐵 + 𝐴. Here, the symbols −
and + represent rotations of 60 and 300 degrees, respectively. Repeated application of these rules
generates sequences that, when interpreted graphically, produce intricate fractal curves, such as
the well-known Sierpinski Triangle.

2.1 Programs as Self-Similar Structures

L-systems exhibit a property known as self-similarity, meaning that structures contain smaller
copies of themselves across different scales. In the context of L-systems, this feature arises naturally
from the recursive application of rewriting rules, producing patterns that preserve the same shape
at progressively finer levels of detail. This behavior is evident in fractals like the Sierpinski Triangle
seen in Example 2.1, where each component is a scaled-down replica of the whole. Such hierarchical
repetition is key to modeling phenomena like plant growth, coastlines, and tree branching.
Self-similarity also emerges in computer programs, which often embody recursive and hierar-

chical structures. Many programs are composed of smaller functions that may invoke themselves
or be embedded within one another, as in if-then-else blocks or loops. Modularity and code
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[Axiom]
A

[Productions]
A = B - A - B
B = A + B + A

[Semantics]

[-] 60o

[+] 300o

[A] Linha
[B] Linha

Strings:

A

B−A−B

A+B+A−B−A−B−A+B+A

B−A−B+A+B+A+B−A−B−
A+B+A−B−A−B−A+B+A−
B−A−B+A+B+A+B−A−B

…

Fig. 1. L-system describing the Sierpinski Triangle.

reuse further reinforce this pattern: generic routines can be instantiated repeatedly across different
abstraction levels, as Example 2.2 explains.

Example 2.2. Figure 2 illustrates the concept of self-similarity in code using a nested if-then-else
block. Initially, a function g(x) contains a single conditional. However, it can be recursively ex-
panded to g(x) = if g(x) then g(x) else g(x), forming a self-referential structure. Such
recursive definitions naturally lead to self-similarity and are common in syntactical constructs that
encode control-flow in programs.

g(x) = if ....
       then ....
       else ....

g(x) = if g(x)
       then g(x)
       else g(x)

if

then else

if

then else

if

then else

if

then else

Fig. 2. The self-similar nature of computer code.

Summary of Ideas This paper leverages the principle of self-similarity to generate C programs
that are both well-defined and arbitrarily complex. The generation model is based on an L-grammar,
akin to the one illustrated in Example 2.1, but instead of producing geometric patterns, it synthesizes
C code constructions with executable semantics. Figure 3 shows an example of two versions of a
program that BenchGen produces for C and Julia. This file is part of a 52-file benchmark that we
use in Section 4.2 to compare the performance of different language processing systems.
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#include "program_c.h" 
array_t* func42
(array_t_param* vars, const unsigned long PATH0, int loopsFactor) {
   size_t pCounter = vars->size;
   if(PATH0 & 1) {
      array_t_param params0;
      params0.size = 0;
      params0.data = (array_t**)malloc(params0.size*sizeof(array_t*));
      array_t* array29 = func43(&params0, loopsFactor);
      DEBUG_RETURN(array29->id);
      free(params0.data);
      array29->refC--;
      if(array29->refC == 0) {
         free(array29->data);
         free(array29);
         DEBUG_FREE(array29->id);
      }
   }
   else {
      array_t_param params0;
      params0.size = 0;
      params0.data = (array_t**)malloc(params0.size*sizeof(array_t*));
      array_t* array31 = func44(&params0, get_path(), loopsFactor);
      DEBUG_RETURN(array31->id);
      free(params0.data);
      array31->refC--;
      if(array31->refC == 0) {
         free(array31->data);
         free(array31);
         DEBUG_FREE(array31->id);
      }
   }
   array_t_param params0;
   params0.size = 0;
   params0.data = (array_t**)malloc(params0.size*sizeof(array_t*));
   array_t* array35 = func45(&params0, loopsFactor);
   DEBUG_RETURN(array35->id);
   free(params0.data);
   return array35;
}

include("program_julia_head.jl")
function func42
(vars::JArray_param, PATH0::UInt64, loopsFactor::Int)::JArray
   pCounter = length(vars.data)
   if (PATH0 & 1) != 0
      params0 = JArray_param{Int}()
      params0.size = 0
      array29 = func43(params0, loopsFactor);
      array29.refC -= 1
      if array29.refC == 0
          empty!(array29.data)
          array29 = nothing
      end
   else 
      params0 = JArray_param{Int}()
      params0.size = 0
      array31 = func44(params0, get_path(), loopsFactor);
      array31.refC -= 1
      if array31.refC == 0
          empty!(array31.data)
          array31 = nothing
      end
   end
   params0 = JArray_param{Int}()
   params0.size = 0
   array35 = func45(params0, loopsFactor);
   return array35;
end

A function that is part of a C benchmark (52 .c files) A function that is part of a similar Julia benchmark

Control flow
(Section 3.2)

Function call
(Section 3.3)

Memory management
(Section 3.4)

Structures & behavior
(Section 3.1)

Multi-Language support
(Section 3.5)

Fig. 3. Example of code that BenchGen produces for C and Julia that manipulate arrays.

3 Code Generation via L-Systems

The tool BenchGen, developed in this work, generates programs that manipulate data structures,
according to the schema seen in Figure 4. Section 3.1 introduces the core building blocks used in
program construction, while Section 3.2 describes semantics of these building blocks.

3.1 Syntactical Building Blocks

The L-systems described in this paper are built from two families of constructs:

• Structure: elements that define the control flow of a program, including IF, LOOP, and CALL.
• Behavior: operations that specify how data is manipulated, including new, insert, remove,
and contains.

3.1.1 Structure Blocks. The control flow in programs generated by BenchGen arises from combin-
ing four types of code blocks, as specified by the grammar below:
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The BenchGen Driver

Front end
• Lexer
• Parser

Generic
AST

C gen

C++ gen

...

Rust gen

Code 
Generator

Benchmark

#Generations

Language

Production 
rules

Axiom

In
pu

ts

Output:

Data Structure

LSystem 
Interpreter

Example: ./benchGen 1 productionRule.txt seedString.txt myProgram array julia

A

A

B

B C

C

D

D

E

E

Fig. 4. BenchGen is a tool that generates programs in different programming languages. It receives as input

the description of an L-System, which consists of a set of production rules, plus a starting symbol (the axiom).

It interprets these rules, producing strings (the L-Strings), which guide the construction of genertic ASTs.

These trees can be converted to programs in different programming languages using different containers. A

code generator then converts the language-specific tree to a program.

𝑏 ::= IF(𝑏cond, 𝑏then) ; ; if _then
| IF(𝑏cond, 𝑏then, 𝑏else) ; ; if _then_else
| LOOP(𝑏cond, 𝑏body) ; ;while
| CALL(𝑏) ; ; function_call

Each of these constructs corresponds to a familiar programming construct: conditional branches
(if-then, if-then-else), loops (while), and function calls. Example 3.1 provides an illustration.

Example 3.1. Figure 5 shows a grammar designed to synthesize programs. The right-hand side
illustrates two derivation steps from this L-grammar, along with a corresponding (simplified) C
program produced from the second derivation.

3.1.2 Behavior Blocks. The dynamic behavior of BenchGen programs emerges from interactions
with data structures. All data structures within a program must share the same type. Currently,
BenchGen supports arrays of integers and sorted linked lists of integers. Additionally, the C code
generator also supports any of the twelve data structures available in the GNOME Library. Adding
support for new containers involves extending four C++ classes. These classes define the behavior
of four constructs in the L-grammar:

• new: Creates and initializes a data structure.
• insert: Adds an element to a data structure in scope.
• remove: Deletes an element from a data structure in scope.
• contains: Checks whether an element exists in a data structure in scope.

Notice that these four behavior blocks can be customized by BenchGen users in any way. For in-
stance, BenchGen provides a “scalar mode” to generate programs that manipulate integer variables.
In this case, we have configured insert to increment variables; remove to decrement them; new to
declare and initialize them with zero; and contains to test if they are zero. As a more concrete
example, below we show how three such operations may be defined for programs working with
arrays.
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[Productions]
A = insert IF(B, LOOP(A)) remove
B = search IF(CALL(A), _)

[Axioma]
A

Iteration 1:
insert IF(B, LOOP(A)) remove

Iteration 3:
insert IF(search IF(CALL(A), _), 
LOOP(insert IF(B, LOOP(A)) remove)) 
remove

void f(struct S s, ulong path) {
  insert(3, s);
  if (path & 1) {

B(s);
  } else {

for (int i0 = 0; i0 < 5; i0++) {
                   A(s);

}
  }
  remove(6, s);
}

Fig. 5. Example of an L-grammar used to define programs. The figure shows a simplified version of a C

program. Figure 3 provides a more concrete view.

Example 3.2. Figure 6 shows C code generated to manipulate arrays. Although a program may
handle many arrays, the example focuses on a specific variable, array156. The operations new(),
insert(), and contains()must be customized by the user to define the behavior of the generated
code.

3.2 Execution Flow

Programs generated by BenchGen are executable. Their control flow is governed by a variable
named PATH, of type unsigned long, which determines the outcome of conditional branches.
Algorithm BitPath in Figure 1 correlates the outcome of branches with this PATH variable. The
algorithm use a counter stack to ensure each path is uniquely identifiable via the PATH variable. It
assigns a unique bitmask to each branch condition by:
(1) Tracking Nesting Depth: Using a stack to manage counters for each level of nested branches.
(2) Resolving Joins: Propagating the "maximum counter" upward when branches merge, en-

suring no bitmask collisions.
The way Algorithm 1 determines how control-flow is taken lets us use BenchGen to test the
effectiveness of profile-guided optimizatins, as Section 4.5 will demonstrate. This mechanism is
clarified in Example 3.3.

Example 3.3. Figure 7 depicts the control flow graph of a program with the PATH variable
combined with masks created by the Algorithm 1. Notice that the counter used as the bitmask
is updated due to nesting or sequencing. Nesting causes the increment of the counter on the top
of the counter stack. Whenever we analyze a branch, its counter will be the maximum of all the
possible control-flows that reache it.

3.3 Function Calls

BenchGen supports function calls through the CALL clause. When an L-string includes a construc-
tion of the form CALL(𝑒), the entire substring 𝑒 is extracted and defined as a separate function.
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array_t* array156;
array156 = (array_t*)malloc(sizeof(array_t));
array156->size = 42;
array156->refC = 1;
array156->id = 156;
array156->data = (unsigned int*)malloc(array156->size*sizeof(unsigned int));
memset(array156->data, 0, array156->size*sizeof(unsigned int));
DEBUG_NEW(array157->id);

unsigned int loop46 = 0;
unsigned int loopLimit46 = (rand()%loopsFactor)/2 + 1;
for(; loop46 < loopLimit46; loop46++) {
  for (int i = 0; i < array156->size; i++) {
    array156->data[i]--;
  }
}

unsigned int loop46 = 0;
unsigned int loopLimit46 = (rand()%loopsFactor)/2 + 1;
for (int i = 0; i < array156->size; i++) {
  if (array156->data[i] == 61) {
    break;
  }
}

new

insert

constains

Fig. 6. Examples of block definitions for new, insert, and contains.

Algorithm 1: BitPath assignment of unique bitmasks to branch conditions
Input: A function 𝑓

Output: A mapping of each branch condition in 𝑓 to a unique bitmask
Initialize the Stack: push a single counter 𝐶𝑜𝑢𝑛𝑡𝑒𝑟0 = 1, representing the least significant
bit (LSB);

Assign Masks to Branches:;
Same Nesting Level: use the current top-of-stack counter to generate the bitmask, e.g.,
PATH & (1 « (counter - 1));

Nested Branch: push a new counter, incremented by 1 from the parent counter,
ensuring fresh bits for deeper nesting;

Handle Join Points (after if-then-else):;
Pop the current counter from the stack;
Update the parent counter (now on top of the stack) to the maximum of:;

(a) the parent’s original value;
(b) the popped (child) counter;

This ensures that parent branches account for the deepest nesting level beneath them;
Independent Branches: after resolving a join, subsequent branches at the same level reuse
the updated parent counter;

The functions generated from a given L-specification can be either grouped into a single file or
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if(PATH & 1)

if(PATH & 2) if(PATH & 2)

if(PATH & 4) if(PATH & 4)

e

if(PATH & 8)

f

join

c d

join

join

a b

join

g h

join

01

0111 10 00

110 010 100 000

110 or 101 or
100 or 000

11 or 01

Possible paths:
0110 or 0101 or 0100
or 0000 or 0*11 or 0*01

Possible paths:
1110 or 1101 or 1100
or 1000 or 1*11 or 1*01

1*** 0***

Code pattern:
if (PATH & 1) {
    if (PATH & 2) {
        a;
    } else {
        b;
    }
} else {
    if (PATH & 2) {
        if (PATH & 4) {
            c;
        } else {
            d;
        }
    } else {
        if (PATH & 4) {
            e;
        } else {
            f;
        }
    }
}
if (PATH & 8) {
    g;
} else {
    h;
}

Fig. 7. The control flow of a synthetic program is determined by the path parameter.

distributed across multiple files, depending on a configuration parameter in BenchGen. Example 3.4
illustrates how BenchGen generates interprocedural code.

Example 3.4. Figure 8 depicts the control flow produced by a CALL block. The enclosed string
gives rise to a new function, which becomes part of the synthesized program. This new function is
invoked at the point in the L-string where the CALL clause appears.

All occurrences of CALL(𝑏) with identical strings 𝑏 result in calls to the same function. To avoid
redundancy, BenchGen maintains a table mapping strings to functions, ensuring that identical
strings refer to the same function instance. Example 3.5 shows how the same function can be called
multiple times. Notice that BenchGen does not support the creation of recursive function calls. If
a function f0 calls another function f1, then f0 is produced by a string that is strictly larger than
the string that generates f1.

Example 3.5. Figure 9 shows an L-System that generates a program with two functions, f0 and
f1. The latter is called twice, because it is produced by a string that appears two times in a given
iteration of the expansion process.

Parameter Passing. Functions generated by BenchGen receive two parameters:

• Data: an array of data structures that enables sharing between caller and callee functions.
• Path: a control variable that governs execution flow, as described in Example 3.3.
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insert
IF(
  search
  IF(
    CALL(
      insert
      IF(
        B,
        LOOP(A)
      )
      remove
    ),
    _
  ),
  LOOP( … )
)
remove

The code block located within a 
CALL construct originates a new 
function in the generated benchmark.

Fig. 8. Control flow of a program containing a CALL block.

void f0(array_t_param* s, ... path) {
    if (path & 1) {
        array_t_param params1;
        // initialize the parameter
        f1(&param1, path);
    } else {
        array_t_param params2;
        // initialize the parameter
        f1(&param2, path);
    }
}

Seed string:
A

Iteration 1:
IF(CALL(C), CALL(LOOP(B)))

Iteration 2:
IF(CALL(LOOP(insert)), CALL(LOOP(insert)))

void f1(array_t_param* vars, ... path) {
    for (int i0 = 0; i0 < path & 0xFF; i0++) {
        // ... insert into array ...
    }
}

A = IF(CALL(C), CALL(LOOP(B)))
B = insert
C = LOOP(insert)

Grammar:

Fig. 9. An L-System that would generate multiple calls to the same function.

TheData array is populated using a reaching definitions analysis, which determines which variables
in the caller function are available to be passed as arguments at the call site. Example 3.6 illustrates
this mechanism.
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Example 3.6. Figure 10 illustrates parameter passing in a program generated by BenchGen. At
the function call site, a reaching definitions analysis identifies three available variables: array1,
array156, and array157. Pointers to these variables are inserted into the param.data structure,
which is passed to function func0. Inside the callee, the passed variables are copied into new
ones using the new construct. Each variable is copied exactly once. If no additional parameters are
available for copying, subsequent new operations will create fresh variables, as seen in Example 3.3.

array_t* func6(array_t_param* vars, const unsigned long PATH0) {
   size_t pCounter = vars->size;
   array_t* array1;
   if (pCounter > 0) {
      array1 = vars->data[--pCounter];
      array1->refC++;
   } else {
      array1 = (array_t*)malloc(sizeof(array_t));
      array1->size = 386;
      array1->refC = 1;
      array1->id = 1;
      array1->data = (unsigned int*)malloc(array1->size*sizeof(unsigned int));
      memset(array1->data, 0, array1->size*sizeof(unsigned int));
   } ... }

Code of callee function, which implements the new construct

If there are still parameters 
available, the NEW construct 
copies one of these parameters 
to the new variable.

Otherwise, a new data structure 
is created, as seen in Figure 4.

array_t_param params1;
params1.size = 3;
params1.data = (array_t**)
    malloc(params1.size*sizeof(array_t*));
params1.data[0] = array0;
params1.data[1] = array156;
params1.data[2] = array157;
array_t* array158 = func6(&params1, path);

Code of caller function, which implements the CALL construct

The analysis of reaching definitions 
determines that three variables are 
available at the point of call. These 
variables are passed as 
parameters to the called function.

Fig. 10. Parameter passing in programs created by BenchGen.

3.4 Memory Management

Programs generated by BenchGen do not suffer from memory leaks, despite frequently relying on
heap allocation. To prevent leaks, BenchGen employs a reference-counting garbage collector. This
approach tracks how many references (pointers) exist to each dynamically allocated object. When
a reference is created, the count is incremented; when it is removed, the count is decremented.
Once the count reaches zero, the object is no longer reachable and can be safely deallocated. To
support this mechanism, each structure created by BenchGen includes an additional field, refC,
which stores the current reference count. Example 3.7 shows how reference counting is used in
BenchGen to prevent memory leaks from happening.

Example 3.7. Figure 11 illustrates how BenchGen uses reference counting to manage memory.
In this example, two variables, x and y, initially point to two separate heap-allocated structures.
Each of these structures contains a refC field that holds the number of active references to the
object. When the assignment x := y occurs, the reference count of the structure originally pointed
to by x is decremented, as x no longer refers to it. If this decrement causes refC to reach zero, the
structure is automatically deallocated. Meanwhile, the reference count of the structure pointed to
by y is incremented to account for the new reference from x. After the assignment, both x and y
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point to the same object, whose refC now reflects two active references. This mechanism ensures
that heap-allocated memory is reclaimed as soon as it is no longer reachable, preventing memory
leaks in programs generated by BenchGen.

typedef struct {
  unsigned int* data;
  size_t size;
  size_t refC;
  int id;
} array_t;

Definition of the Array Data Strucgure

Data structures created via LGen 
are defined with meta data, 
including a reference counter.

array_t* arr1 = arr0;
arr0->refC++;

Variable assignment, e.g., as due to parameter passing

The new clause can cause a variable 
assignment if there are parameters available for 
assignment (see example 3.5).

{  …
  arr0->refC—;
  if (!arr0->refC) {
    free(arr0->data);
    free(arr0);
  }
}

Variable definition leaves scope

A variable goes out of scope when the block in 
which it is defined ends. In this case, the 
counter associated with that variable is 
decremented. When it reaches zero, the 
variable is deallocated.

Fig. 11. Reference counter implementation.

3.5 Multilanguage Support

BenchGen is currently available in a beta version that supports the creation of benchmarks for
multiple programming languages. Some of these languages are evaluated in Section 4.2. The
benchmark generator itself is implemented in C++. To add support for a new language, users
must implement new C++ classes that define the semantics of the structure and behavior blocks
described in Section 3.1. This process also requires modifying the templates that generate code for
the structure blocks (IF, LOOP, and CALL) and the behavior blocks (insert, remove, contains, and
new).

Extending BenchGen therefore involves recompilation and is not yet fully automated. In addition
to implementing new C++ classes, users must register the language module in the main BenchGen
driver, which requires changing one line of code in the driver itself. In future work, we aim to fully
automate this process and decouple the tool from the specific languages it supports. To this end,
we are considering extending BenchGen with a domain-specific language that would allow users
to specify new code-generation directives declaratively.

4 Experimental Evaluation

The goal of this section is to demonstrate how BenchGen can be used in practice. To this end, we
explore its usage in the following Case Studies:

• CS1: Comparison between gcc and clang in terms of execution speed, binary size, and
compilation time.

• CS2: Comparison of the C and C++ compiler backends available in the Gnu Compiler
Collection.
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• CS3: Analysis of the asymptotic behavior of different optimization levels in clang and gcc.
• CS4: Examination of the evolution of gcc from version 5 to 14, focusing on execution speed,
binary size, and compilation time.

• CS5: Evaluation of the impact of profile-guided optimizations in clang.
• CS6: Comparison of different data structures in the Gnome Library (GLib) with respect to
insertion, search, and deletion times.

• CS7: Comparison between BenchGen and CSmith, a compiler fuzzer.
Experimental Setup: All experiments were conducted on an Intel(R) Xeon(R) CPU E5-2680

v2 running at 2.80GHz, with Linux Ubuntu 5.15.0-139-generic. The specific compiler and library
versions used are detailed in each case study.

Checking for Undefined Behavior: We analyzed the C programs evaluated in Section 4.1
using four tools capable of detecting undefined behavior: UBSan and ASan from clang [36],
Valgrind [31], the EVA plugin of Frama-C [4], and KCC [13]. In addition, we verified that every
program evaluated in Section 4.2, when executed in debug mode, produces the same trace1. While
these measures do not formally prove that BenchGen always generates sound benchmarks, they
provide strong evidence that this is highly probable.

4.1 CS1: gcc vs clang

The GNU C Compiler (gcc) and LLVM’s clang are the two most widely used C compilers, and
comparisons between them are common in the literature. This case study contributes one more data
point to this ongoing discussion by evaluating both compilers across three performance metrics:

• Execution time of the compiled program.
• Compilation time required to build the program.
• Binary size of the compiled program.

The comparison covers six optimization levels for gcc 14.2: -O0, -O1, -O2, -O3, -Os, and -Ofast;
and seven for clang 21.0: -O0, -O1, -O2, -O3, -Oz, -Os, and -Ofast. Binary sizes were collected
using the Linux size command, considering only the text section, which represents the size of
the executable code in bytes. Compilation and execution times were measured with hyperfine,
configured with three warm-up runs and at least ten benchmark runs. To compare the compilers, we
have used four different L-Systems to generate four programs. We chose generations that ensured
a mix of different execution times; hence, this custom benchmark collection contains programs
that run within 10, 50 and 200 seconds once compiled with gcc -O3.

Discussion. Figure 12 summarizes the results of this comparison, showing, under each plot, the
L-System and the generation that produced those numbers. The scatter plots show compilation time
against execution time, with point size proportional to binary size. We observe that gcc and clang
tend to produce programs with similar execution times at the lowest and highest optimization
levels; however, gcc’s compilation times are generally lower.
A clear trend emerges for gcc: it often exhibits a smooth trade-off between compilation time

and execution time, forming a Pareto-like curve where longer compilation typically results in
faster execution. This pattern is less evident for clang. Instead, clang shows a marked distinction
between the lowest optimization levels (-O0, -O1) and the higher ones, while the most aggressive
optimizations (-O2, -O3, and -Ofast) yield very similar results. This observation echoes findings by
Curtsinger and Berger in their work on Coz [11], who reported no statistically significant difference
between -O2 and -O3 in clang2. Regarding binary size, both compilers generate smaller executables

1BenchGen provides a debug mode in which each program logs every behavioral operation defined in Section 3.1.2.
2See https://youtu.be/r-TLSBdHe1A?t=1438 at 23:58
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Fig. 12. Comparison of gcc 14.2 and clang 21.0 across optimization levels.

at -Os, with clang holding a slight edge (2–3%) at the -Oz level. Nevertheless, both can reduce
code size by nearly 50% when moving from -O3 to -Os.

4.2 CS2: Comparison between Different Programming Languages

As explained in Section 3.5, BenchGen can be customized to synthesize benchmarks in multiple
programming languages. This section leverages its multi-language support to compare C, C++,
Julia, and Go. Support for these languages is currently available in BenchGen’s official repository;
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however, the tool has also been extended to generate benchmarks in other languages, including Rust
and Vale. These extensions, however, are not maintained by the BenchGen authors. To perform
this comparison, we used the first grammar shown in Figure 12 to produce eleven generations of a
program (reporting data for generations 6 through 11). Programs in each language were executed
with the following tools:

C: gcc 13.3.0
C++: g++ 13.3.0
Go: go 1.25.0
Julia: julia 1.11.6

Note that Julia runs in interpreted mode with just-in-time compilation, whereas the other languages
are compiled ahead of time. This evaluation considers only execution time, excluding compilation
time. Also, each language produces the same number of source files, except for C and C++, which
generate one extra header file. For example, in the 11th generation, BenchGen produces 52 files
for Julia and Go, and 53 for C and C++.

Programming language
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            C++ (std::vector)
            C++ (array)
            Julia
            Go
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Fig. 13. Execution time of benchmarks produced by BenchGen in different programming languages.

Discussion. Figure 13 compares execution time across languages. The results largely align with
expectations: they highlight the performance differences between low-level, statically compiled
languages (C and C++) and higher-level languages with different compilation models (Go and Julia).
All languages exhibit an exponential increase in execution time as program depth grows, which
is inherent to the fractal-based benchmark generator. Beyond this general trend, we note several
specific findings:

• C vs. C++ with arrays. Performance is nearly identical: there is no statistically significant
difference at the 95% confidence level when comparing programs of the same generation.
This is because both are compiled with the same compiler infrastructure (gcc 13.3.0), which
produces highly similar assembly code.

• Julia. Julia shows excellent performance, particularly for larger programs—a behavior al-
ready observed in previous work [6]. Its just-in-time (JIT) compiler, built on LLVM, can
apply aggressive runtime optimizations such as loop unrolling and SIMD vectorization by
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specializing code based on runtime types and execution patterns. As program complexity
increases in later generations, these optimizations give Julia a significant advantage, allowing
it to outperform C++ with vectors.

• C++ with vectors. Programs using std::vector are slower than those using raw arrays.
This overhead arises from additional metadata (size, capacity) and the cost of reallocation
when capacity is exceeded, which requires copying elements to new memory. In benchmarks
where data grows quickly, this reallocation cost is significant. Indeed, from the 8th to the 9th
generation, Julia’s JIT optimizations allow it to surpass C++ with vectors in performance.

• Go. Go is consistently the slowest language. This is unsurprising, and follows trends already
reported and discussed in open forums and technical books [37]. While Go is compiled,
its runtime includes garbage collection and applies less aggressive optimizations, which
introduces overhead not present in C, C++.

The trends observed in Figure 13 are consistent with those documented on the well-known “Bench-
mark Game” website3. A key distinction, however, lies in the implementation strategy. While the
Benchmark Game compares hand-optimized solutions that may differ syntactically and semanti-
cally, BenchGen produces structurally similar code across languages. This methodology offers a
more precise comparison of compiler performance by eliminating variability introduced by differing
algorithmic implementations.

4.3 CS3: Asymptotic Behavior

The ability to gradually vary the size of programs generated by BenchGen makes it a suitable tool
for conducting empirical asymptotic analyses of language processing systems. In this section, we
illustrate this capability by empirically evaluating the asymptotic complexity of different phases of
clang (front end, middle end, and back end), as well as the full compilation pipeline of gcc. For
this purpose, we employ a standard L-System to produce eight generations of a program (from the
5th to the 12th) and feed these programs to the compilers.

Discussion. Figure 14 relates the running time of the different compilation phases to the size of
the binary processed at each generation of the target program. This analysis yields several insights,
discussed below:

• All analyzed tools exhibit linear behavior for large programs, with very strong correlations
(above 0.9) across different compilers and optimization levels. This applies to both clang and
gcc. However, for clang’s front end, linear growth only becomes evident in later generations
(iterations 9–12), due to the heavy startup costs of the parser and IR generator.

• There is little statistical difference among the higher optimization levels of clang (-O2, -O3,
and -Ofast). This observation corroborates the findings reported in Section 4.1. It appears
valid, at least in this experiment, across all three phases of clang’s compilation pipeline, and
is especially pronounced in llc, the machine code generator.

• Although gcc also shows strong linear behavior at all optimization levels, the constant factors
vary considerably. The size-optimization level (-Os) exhibits the steepest growth, which is
expected since gcc -Os produces the smallest binaries.

Overall, these results suggest that, at least when compiling BenchGen programs, neither clang
nor gcc exhibit asymptotic performance bugs of the kind reported in previous work [18, 32].

3Available at https://benchmarksgame-team.pages.debian.net/benchmarksgame/ as of September 20th.
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Fig. 14. Empirical evaluation of the asymptotic behavior of different compilation phases of clang and of the

full compilation pipeline of gcc.

4.4 CS4: The Evolution of gcc

GNU gcc, currently at version 14, is one of the oldest and most widely used C compilers. Over the
years, it has undergone many changes, including support for additional languages and continuous
performance improvements. This case study compares different versions of gcc across multiple
optimization levels using three metrics:

• Execution time of the compiled program (measured with hyperfine).
• Compilation time required to build the program (also measured with hyperfine).
• Binary size of the .text segment of the executable (collected with the Linux size utility).

For this comparison, we used BenchGen with the first L-System shown in Figure 12. The program
generated at the 10th iteration of this grammar was compiled with six versions of gcc.

Discussion. Figure 15 summarizes results for six optimization levels: -O0, -Og, -O1, -Os, -O2, and
-O3. Each group of bars corresponds to a compiler version: gcc5, gcc7, gcc9, gcc11, gcc13, and
gcc14. Below we discuss some of the insights of this study:

Compilation time: We observe a steady increase in compilation time with each new version
of gcc, particularly at higher optimization levels such as -O3. Comparing versions 5 and 14,
compilation time rose by about 42% over nine years, with a 31% increase even at -O0. This is
unsurprising: new optimization passes have been added over time, which increases compile
time in exchange for better code quality.
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Execution time: Performance has improved at the higher optimization levels. Comparing
gcc5 to gcc14, execution time decreased by roughly 27% at -O3, 32% at -O1, and as much
as 47% at -Og. The gains at -O0 were modest, about 7%. These results indicate that newer
versions of gcc generate more efficient code, especially at intermediate optimization levels.

Binary size: Binary size has remained stable across versions. At -Os, code size decreased only
0.34% between gcc5 and gcc14. At -O3, binary size initially increased from gcc5 until gcc7,
dropping noticeably in gcc9. Past this point, we again observe a small increase until gcc14.
However, in this version code is still almost 10% smaller than in gcc5.

Over the evolution from version 5 to 14, gcc shows a clear trade-off: longer compilation times in
exchange for more efficient executables. While binary size has changed little, execution performance
has improved noticeably, particularly at -Og and -O3. These results highlight an important trend: the
gcc community has consistently prioritized code quality and runtime efficiency over compilation
speed, accepting longer build times in return for measurable performance gains.

4.5 CS5: Profile Guided Optimizations in clang

Profile-Guided Optimization (PGO) is a compilation technique that leverages runtime information
collected from representative executions of a program to improve the quality of the generated
code. By replacing purely static heuristics with empirical execution data, PGO enables the compiler
to make more informed decisions regarding branch prediction, function inlining, loop unrolling,
and code layout, thereby enhancing both performance and efficiency. In typical C, C++ and Rust
compilers, PGO is integrated into the standard optimization pipeline rather than constituting a
separate optimization level. Specifically in clang, PGO serves as a refinement to existing optimiza-
tion levels, most notably -O2 and -O3. When profile data is provided via the -fprofile-use flag,
clang applies the chosen baseline optimizations but augments them with profile-driven insights,
generating code that more accurately reflects the observed runtime behavior of the program.
This section illustrates how BenchGen can be used to evaluate the effectiveness of profile-

guided optimizations (PGO). As described in Section 3.2, the control flow of a program generated
by BenchGen is governed by the variable PATH. To assess the performance gains provided by PGO,
we conduct the following experiment:
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(1) Generate four program variants (Generations 6, 7, 8, and 9) using the following grammar
with array structures:
A = new B B
B = IF(LOOP(insert A contains), LOOP(insert A contains))

(2) Compile each program at the -O2 optimization level with PGO enabled4.
(3) During the “Training Phase,” collect profile information by running each program with

PATH = 20 (i.e., PATH = 1).
(4) During the “Testing Phase,” for 𝑖 = 1 to 63:
(a) Execute each program with PATH = 2𝑖 − 1, e.g., PATH = 0𝑏1, PATH = 0𝑏11, etc.

Let 𝑡 denote the execution time of the program compiled with clang -O2 without profile data, and
let 𝑡𝑖 denote the execution time with PATH = 2𝑖 . Then, the ratio 𝑡/𝑡𝑖 quantifies the relative speedup
due to profile-guided optimizations as the control-flow path diverges by 𝑖 bits.

Discussion. Figure 16 shows the data collected during this experiment. The results in Figure 16
reveal two distinct behaviors of profile-guided optimizations. In the expected case (Generations
6–8), the performance trend matches our intuition: when the execution path during testing closely
resembles the path exercised during training, we observe significant speedups, often reaching 2x.
Similar results on real applications have been reported in previous work [8, 27, 34].
As the number of bit flips in PATH increases, however, the executed control flow diverges from

the profiled run, and the benefit of PGO diminishes. Eventually, for highly divergent inputs, the
profiled and non-profiled binaries converge to similar performance, as the compiler’s profile-driven
decisions no longer apply.

Profile Overfitting: The unexpected case arises in Generation 9. Here, PGO yields a very large
speedup when execution follows the training path (more than 2.2x). Yet, as the path diverges, the
optimized binary becomes slower than its non-profiled counterpart. This behavior suggests an
instance of profile overfitting: because PGO biases optimizations toward the observed hot path,
code along unprofiled paths may suffer from unfavorable decisions.
A plausible explanation for this effect is the difference in the number of functions inlined with

and without profiling data. Clang/LLVM makes inlining decisions at the call-site level. A function
call along the hot path may be inlined aggressively, while the same call in a cold path may be left
uninlined, leading to inconsistencies in call overhead, code size, and optimization opportunities.
Combined with profile-driven code layout and branch prediction, this selective optimization can
make non-profiled paths slower than in a neutral, non-PGO binary. Thus, Generation 9 highlights
a limitation of PGO: while it can deliver substantial performance gains when training inputs
are representative, it may degrade performance when profile data overfits to a narrow subset of
execution paths.

4.6 CS6: Data Structures in GLib

The GNOME Library (GLib) is a C library developed as part of the GNOME project that provides a
wide range of data structure implementations, utility functions, and portability abstractions. Among
its generic containers are dynamic arrays (e.g., GArray, GPtrArray), byte arrays (GByteArray),
singly linked lists (GSList), doubly linked lists (GList), double-ended queues (GQueue), hash
tables (GHashTable), balanced binary trees (GTree), and others. This variety exists because no
single container is optimal for all purposes: some favor fast insertion or deletion (especially at
specific positions), others provide efficient random access, better memory locality, sorted traversal,

4We report results for clang at the -O2 level because the speedups achieved with PGO are comparable to those observed at
-O3, and consistently higher than those obtained at -O1.
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or minimal overhead. By offering multiple data structures, GLib allows programmers to select the
container best suited to their performance, memory, and semantic requirements.

BenchGen enables the systematic evaluation of the dynamic behavior of these data structures.
As discussed in Section 3.1.2, the current implementation of the C code generator supports all
twelve containers provided in the default distribution of the library5. This section demonstrates
how such support can be used to compare the performance characteristics of different containers.
To this end, we employ three grammars designed to stress insertion (insert), deletion (remove),
and search (contains) operations through a large number of executions. The adopted methodology
is as follows:
(1) Use the non-recursive L-System below to generate the last iteration of a program:

A0 = A1 A1 A1 A1 A1 A1 A1 A1;
A1 = A2 A2 A2 A2 A2 A2 A2 A2;
A2 = A3 A3 A3 A3 A3 A3 A3 A3;
A3 = insert insert;
B = LOOP(CALL(B) C);
C = B {<operations>} B;

5A detailed description of these containers is available at https://docs.gtk.org/glib/data-structures.html.
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(2) The operations symbol acts as a placeholder, expanded into a random sequence of operations
(insert, remove, and contains) in varying proportions.

(3) The seed string for the grammars is always “new A0 B”.
(4) Measure the running time of each program using hyperfine. Only one warm-up execution

is performed due to the long total runtime of all experiments.
(5) Programs with a similar number of operations are grouped together, and we report the

average running time within each group.
The first three productions of the grammar above populate the container with a minimum of
random integers. The last step of the above methodology—grouping programs by the number of
operations—is necessary because it is not possible to precisely control how many iterations are
executed within loops generated by BenchGen. Although the maximum loop trip count is bounded
as an input parameter, the actual number of iterations is chosen randomly within that bound.

Discussion. Figure 17 reports the running time of programs generated using the methodology
described above. As the number of operations grows, hash tables and balanced trees clearly outper-
form lists and queues. Between these latter two containers, the queue consistently performs better
than the list, except for very small numbers of insertions. This behavior is expected: while both
data structures support 𝑂 (1) insertions, in the doubly linked GList two pointers must be updated,
whereas in GQueue only one pointer is modified.
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Fig. 17. Comparison of four data structures from GLib: GHashTable, GTree, GQueue, and GList.

At the scale of operations shown in Figure 17, GTree appears consistently faster thanGHashTable,
regardless of the operation. However, this situation changes when the number of operations in-
creases further, as illustrated in Figure 18. Around 6 million insertions, the hash table overtakes the
balanced tree, and similar crossover points can be observed for deletion and search operations.
This behavior seen in Figure 18 can be explained by the different asymptotic properties and

implementation trade-offs of the two data structures. Balanced trees guarantee𝑂 (log𝑛) time per op-
eration, while hash tables typically achieve𝑂 (1) average time, at the cost of higher constant factors
due to hashing and possible collisions. For smaller workloads, the overhead of maintaining a hash
table, such as computing hash values and managing bucket arrays, outweighs the logarithmic costs
of tree operations, making GTree faster in practice. As the number of operations grows, however,
the logarithmic scaling of trees eventually becomes the dominant factor, allowing GHashTable
to surpass GTree. Thus, the crossover point observed in Figure 18 reflects the causal interaction
between constant-factor overheads and asymptotic growth rates in these data structures.
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4.7 CS7: Comparison with CSmith

Several programming language fuzzers enjoy widespread popularity. The main goal of such tools,
including CSmith [41] and YarpGen [25] (for C) or ChiGen [38] (for Verilog), is to uncover bugs
in language processing systems such as compilers or interpreters. The purpose of BenchGen,
however, is different: it was designed to evaluate the performance of these systems. Its ability to
expose bugs is limited, since the programs it produces are less diverse than those generated by a
fuzzer like CSmith. On the other hand, BenchGen can stress-test compiler performance in ways
that CSmith and related tools cannot. This section illustrates this point through the following
challenge: generate a collection of programs whose execution time is comparable to the average
runtime of Spec Cpu2017 programs, and whose behavior under optimization resembles that of
real-world workloads.

Discussion. To compare CSmith and BenchGen under this challenge, we have used these two
program generators to produce a collection of four benchmarks and compare them with the
programs from Spec Cpu2017. The adopted methodology is described below:
(1) We ran the 28 Spec Cpu2017 programs that clang/LLVM 20.1 can compile.
(2) Using CSmith, we generated 10,000 programs and selected the four whose execution time

was closest to the average runtime of the 28 Spec Cpu2017 programs compiled without
optimizations.

(3) Using the four grammars described in Section 4.1, we generated four BenchGen programs
whose runtime approximated the same average.

(4) We then optimized each collection of benchmarks (28, 4, and 4 programs, respectively) under
different optimization flags.

Table 1 presents the results of this experiment. We stopped BenchGen as soon as we obtained
programs whose running time was above the average Spec time, and chose the generation imme-
diately before. However, it is not possible to steer CSmith in such a way. In other words, users
cannot control CSmith to produce programs that execute within a given time frame. Most CSmith
programs tend to run for only a very short time. Moreover, the impact of optimizations on these
programs differs substantially from what we observe in real-world benchmarks such as those in
the Spec collection, whereas the effects observed on BenchGen programs more closely resemble
the behavior of genuine workloads. This difference between the effects of compiler optimizations
on CSmith and real-world programs had been noticed in previous work [12].
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-O0 -O1 -O2 -O3

BenchGen
Cycles (Mean) 1.44E+11 5.21E+10 5.20E+10 5.14E+10
Ratio 1 2.76 2.77 2.80

SPEC C2017
Cycles (Mean) 5.63E+11 2.43E+11 2.37E+11 2.30E+11
Ratio 1 2.32 2.37 2.44

CSmith
Cycles (Mean) 2.85E+06 1.57E+06 1.49E+06 1.44E+06
Ratio 1 1.85 1.91 1.98

Table 1. Mean cycles and ratios for different benchmarks across optimization levels.

5 Related Work

BenchGen is a tool designed to synthesize benchmarks. A number of works in the compiler
literature have also proposed techniques for benchmark generation. In what follows, we review this
body of work, emphasizing aspects that make BenchGen particularly well-suited for performance
analysis.

Compiler Fuzzers. The key distinction between compiler fuzzers and BenchGen lies in their
primary objectives. Most existing tools are designed to uncover bugs in language processing systems,
whereas BenchGen is specifically aimed at analyzing their performance. Consequently, BenchGen
would be less effective than a fuzzer such as CSmith for identifying errors in C compilers. On the
other hand, it enables tasks that are not easily supported by traditional fuzzers, such as studying
the asymptotic behavior of compiler optimizations, comparing compilers in terms of compilation
time, code size, and execution speed, or analyzing the evolution of a single compiler across multiple
versions with respect to these same metrics.

Benchmark Synthesizers. The development of compilers requires benchmarks. For this reason,
some of the most celebrated papers in programming languages describe benchmark suites, such as
Spec CPU2006 [20], MiBench [17], Rodinia [7], etc. These benchmarks are manually curated and
usually comprise a small number of programs. A few years ago, Cummins et al. [9] demonstrated
that this small size fails to cover the space of program features that a compiler is likely to explore
during its lifetime.

The generation of benchmarks for tuning predictive compilers has been an active research field
over the last ten years. Early efforts aimed at the development of predictive optimizers used synthetic
benchmarks designed to find compiler bugs. Examples of such synthesizers include CSmith [41],
LDRGen [2], and Orange3 [29, 30]. Although conceived as test case generators, these tools have
also been used to improve the quality of optimized code emitted by mainstream C compilers [3, 19].
Even CompilerGym [10], a tool for applying machine-learning-based code optimization techniques,
provides randomly produced CSmith programs. However, more recent developments indicate that
synthetic codes tend to poorly reflect the behavior of programs written by humans; consequently,
they produce deficient training sets [12, 15]. Section 4.7 discusses precisely these issues with
CSmith: the difficulty of using it to generate programs that run for a reasonable amount of time
and the ease with which compilers optimize such programs.
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In order to produce more realistic benchmarks, a vast literature on extracting programs from
repositories has recently emerged, seeking to build benchmark suites for training compilers. Some
of these works aim to generate benchmarks to feed machine learning models [14, 16, 33], for
example. This literature has some shortcomings when compared to BenchGen:

• Very large benchmark suites, such as AnghaBench [12] or Poj [28], compile but do not run.
• Benchmark suites designed to run sometimes exhibit undefined behavior, such as ExeBench [1]
and ColaGen [5].

• Techniques that generate benchmarks using LLMs, such as the system of Italiano and Cum-
mins [21], fail to produce large programs and take a long time to generate even a small
number of programs, as recently shown by Guimarães et al [35].

• The Jotai collection [22], which was built from programs that run without undefined be-
havior, contains only very small programs. In our attempt to run the programs available in
CompilerGym [10], the longest-running program took only 0.017 seconds when compiled
with clang -O0.

6 Conclusion

This paper has presented a methodology for generating benchmarks based on the observation
that programs often exhibit self-similar structures, and thus can be described as derivations of
L-Systems. We validated this idea through the design and implementation of BenchGen, a tool
capable of producing benchmarks in multiple programming languages. In contrast to typical fuzzers,
BenchGen is multilingual and allows users to generate programs of arbitrary size whose execution
exercises complex control-flow patterns.

Future Work. Beyond the concrete implementation of BenchGen, the key contribution of this
paper is the proposal that programs can be systematically generated as instances of L-Systems.
The particular L-System flavor explored here employs a combination of seven constructs (three
control-flow structures and four data-structure behaviors). Nevertheless, the approach can be
extended to a much broader set of syntactic features. For example, the current version of BenchGen
generates programs restricted to a single data structure at a time, whereas nothing in the formalism
prevents richer combinations of data structures. Likewise, additional control-flow constructs such
as switch, do-while, or even goto could be naturally incorporated. We leave the investigation of
such extensions as promising directions for future work.
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