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A predictive compiler uses properties of a program to decide how to optimize it. In this scenario, the compiler
is trained onto a collection of programs to derive a model which determines its actions in face of unknown
codes. One of the greatest challenges of predictive compilation is how to �nd good training sets. Regardless
of the programming language, the availability of human-made benchmarks is limited. In addition, current
synthesizers produce code that is very di�erent from actual programs, and mining compilable code from open
repositories is di�cult, due to program dependencies. In this paper, we use a combination of web-crawling and
type-inference to overcome these problems for the C programming language.We use a type reconstructor based
on Hindley-Milner’s algorithm to produce A����, a virtually unlimited collection of real-world compilable C
programs. To demonstrate the applicability of A����, we show how it closely mimics properties of typical C
benchmarks. From this observation, we use thousands of its programs to train predictive compilers, greatly
outperforming results obtained with synthetic training sets.

CCS Concepts: • Software and its engineering→Runtime environments;Compilers; Software libraries
and repositories;

Additional Key Words and Phrases: Benchmark, Repository, Synthesis, Training

ACM Reference Format:
Anderson Faustino da Silva, Bruno Conde Kind, José Wesley de Souza Magalhães, Jerônimo Nunes Rocha,
Breno Campos Ferreira Guimarães, and Fernando M Q Pereira. 2020. AnghaBench: a Synthetic Collection
of Benchmarks Mined from Open-Source Repositories. 1, 1 (May 2020), 22 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 INTRODUCTION
The growing popularity of stochastic classi�cation techniques is contributing to make compiler
autotuning an e�ective approach to the generation of e�cient programs [3, 60]. Autotuning is
implemented as follows. A compiler is trained on a collection of programs, and uses results learned
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during this training phase to derive a model which infers how to optimize unseen codes. During
training, samples from the known collection of programs are compiled in many di�erent ways,
and best results, given some objective function such as runtime, size or energy consumption,
are recorded. When faced with an unknown program Pu , the compiler uses the model to guide
its action on which analyses and optimizations to apply. This modus operandi has been shown
to be e�ective along di�erent dimensions of code e�ciency, such as runtime [4, 21, 26, 44, 48],
energy consumption [46, 54], code size [8, 14, 52], hardware usage [20, 49], and the size-speed
relation [53, 63], for instance.

The Problem Posed by the Lack of Benchmarks. A common shortcoming in this �eld, extensively
discussed by Cummins et al [20], is the small size of typical training sets. To demonstrate this point,
Cummins et al. have analyzed 25 research papers published between 2013 and 2016, from four
conferences: CGO, HiPC, PACT, and PPoPP. They observe that “the average number of benchmarks
used in each paper [is] 17". This result, although at �rst surprising, should not be unexpected.
Typical benchmarks contain a small number of programs: SPEC CINT2006 [33] contains 12, SPEC
CFP2006 [33] contains 17, Parsec [5] contains 13, Rodinia [15] contains 23, Polybench [50] contains
30, cBench [28] contains 30, and NPB v.1 [6] contains 8. The problem with these small numbers is, in
the words of Cummins et al, that “heuristics learned on one benchmark suite fail to generalize across
other suites". Wang and O’Boyle subsume well the essence of the problem: "The most immediate
problem continues to be gathering enough su�cient high quality training data. Although there are
numerous benchmark sites publicly available, the number of programs available is relatively sparse
compared to the number that a typical compiler will encounter in its lifetime." [60]

To circumvent the obstacle posed by a perceived lack of benchmarks, compiler researchers resort
to program generation. With such purpose, automatically constructed programs have been used to
tune compiler heuristics in speci�c scenarios [11, 54, 58, 59, 61]. However, these programs cannot be
easily employed in general purpose compilers: they consist of micro-kernels that exercise particular
aspects of the target hardware or of the target programming language. As an example, Sreelatha
et al. [54] generate code snippets to �nd optimum constants for their code generation approach.
Each program performs one action several times, be it to access memory, to synchronize threads,
to force branch mispredictions, etc. Such behavior, although be�tting Sreelatha et al.’s needs, is
unlikely to occur in real-world programs.

Our Contributions. In this paper, we bring forward a new technique to generate compilable
benchmarks for the C programming language. As we explain in Section 3, our methodology is
based on the automatic download of C code from open-source repositories. Although an obvious
alternative to the synthesis of vast amounts of benchmarks, this approach is not common practice
due to one fundamental shortcoming: it is di�cult to compile code downloaded from repositories
automatically, due to program dependences. In the words of Cummins et al. [20]: “preparing each of
the thousands of open source projects to be directly applicable for learning compiler heuristics would
be an insurmountable task." In this paper, we show how to compile these codes without human
intervention. Key to the success of this endeavor is type reconstruction. We use PsycheC, a type
inference engine for C [41], to �ll up all the missing dependences of code mined from the internet.
This combination of code crawler and type reconstruction lets us build a collection of compilable
programs that, for all practical purposes, is virtually unbounded.

Summary of Results. We call the collection of C benchmarks that we synthesize out of open-
source repositories, A����. This collection contains only compilable code; however, similarly
to other synthetic benchmark generators[7, 9, 19, 20, 31], we do not guarantee the absence of
unde�ned behavior when such programs run. Nevertheless, we show that the existence of this
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very large collection of programs, plus the infrastructure to augment it at will is bene�cial to the
programming language community. The reader could think that it is simple to analyze any partial
C function, even if it does not compile, as long as it is syntactically valid. This statement is not true.
The C grammar is not context free; hence, most parsers, including clang’s and gcc’s, require all
the dependences in place, otherwise, statements like T*c become ambiguous: is T a type, or the
�rst operand of a multiplication? Melo et al. [41] present other examples of ambiguities. A����, in
turn, can be parsed by any C analyzer, can be converted into intermediate representations such as
LLVM IR and gcc Gimple, and can be translated into object �les. A���� supports compiler tuning
for code size reduction, and lets researchers study properties of real-world programs via static code
analyses. Such possibilities are summarized in the following list of contributions:

Reconstructor Section 3.1 describes the infrastructure that we use to obtain compilable C pro-
grams out of open-source repositories. This combination of web-crawler and type inference
engine is able to produce one million compilable C functions in about one week, including
the time to download �les, extract functions and reconstruct missing types.

Distribution We currently provide a public collection of over half-a-million compilable C �les,
organized as single- function and multiple-function benchmarks. As we explain in Section 3.2,
this universe can be browsed in di�erent ways –search being enabled by analysis of the
LLVM representation [38] of each program.

Analyses In Section 4.2 we apply static analyses on C programs to obtain a glimpse on proper-
ties that are representative of real-world code, such as uses-per-variables, loads-per-stores,
instructions-per-branches, etc. Section 4.3 shows that A���� approximates these properties
for human-written benchmarks substantially better than codes produced by synthesizers
such as CS���� [62], LDRG�� [9] and DeepSmith [19].

Applications In Section 4.5, we use A���� to train Y�C�S, a framework implemented by
Filho et al. [26] to �nd good optimization sequences for LLVM. Considering code size as
the objective functions, we show that A���� yields a training set 45.33% and 36.77% more
e�ective than programs generated by CS���� [62] and LDRG�� [9].

Optimization We have used A���� to produce a code reduction tool, A����Z, that improves
clang-Oz by 11.1% on average. A����Z, subject of Section 4.6, augments clang with a
database of known programs. To compile an unseen program Pu , it �nds the program Pk
the closest to Pu , using well-known metrics of program distance [44]. By applying onto Pu
optimizations e�ective on Pk , A����Z can reduce codes impervious to even Rocha et al.
[51]’s state-of-the-art approach.

2 OVERVIEW
2.1 Predictive Compilation
As mentioned in Section 1, a predictive compiler relies on properties of known programs to
approximate properties of unknown programs. The collection formed by all the known programs
is called the Training Set. Predictions, in this context, consist in matching program properties, also
called features, with compilation actions. The concept of program property has been de�ned in
previous work; however, because this is a central notion to this work, we recall its de�nition, using
the notation proposed by Pereira et al. [47]:

De�nition 2.1 (Program Feature). Given a program P , a static program feature f (P) is any charac-
teristic of P , with the following attributes:

Static: f (P) depends only on the syntax of P ;
Consistent: if f (P) = x , then x is unique;
Available: f (P) can be computed in polynomial time.
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An ordered sequence of program features determines a feature vector. The set of every possible
feature vector gives us a feature space. Such space can be explored in many di�erent ways. For
instance, because it abides by Euclidean Laws, it is sound to de�ne distance between vectors.
Example 2.2 illustrates these concepts.

Example 2.2. Figure 1 shows a three-dimentional feature space. The three features that form it
are Number of Instructions, Number of Stores and Loop Depth. The latter feature is determined by
the depth level of the innermost natural loop in the program.

  0  20  40  60  80 100 120 5
0

10
0

15
0

20
0

25
0

0

1

2

3

4

(93, 4, 234)

Number of stores

Nu
m

be
r o

f i
ns

tru
ct

io
ns

Mos
t n

es
ted

 lo
op

0  1  0  1  1

(88, 2, 191)

0  1  1  0  1
ta
il
ca
ll
el
im

lo
op
-s
im
pl
if
y

sc
al
ar
iz
er

li
cm

lo
op
-r
ot
at
e

Feature vector

Optimization vector

Fig. 1. Training a predictive compiler.

The training phase of a predictive compiler consists in a search, not necessarily exhaustive, for
the most adequate compilation action for each program in the training set. The notion of “most
adequate action" depends on two factors: (i) the objective function that guides the search; and
(ii) the representation of the action. Typical objective functions include runtime, size and energy
consumption. Common representations include tuples and lists of optimizations. In the former
case, the order of application of an optimization is �xed—what varies is the occurrence or not of
the optimization [26, 27]. In the latter, any permutation of a known universe of optimizations is
acceptable [1, 17, 55].

Example 2.3. The property space seen in Figure 1 contains twelve programs, each one represented
as a dot. The �gure shows the feature vectors of two programs. The best tuple of optimizations, from
a universe of �ve candidates, for each one of these two programs is also shown. A zero means that
the optimization is inactive; a one means that it should be applied onto that program. Such tuples
can be found using di�erent heuristics, including exhaustive search. In this example, we assume
that the objective function is size; thus, a tuple t1 is better than a tuple t2 when the optimizations
in t1 reduce code size more than the optimizations in t2.

Once a compiler is trained, it can be used to optimize unknown programs. Optimizations, in this
case, are based on approximations: the behavior observed in the training set is used to approximate
the behavior of the unseen code. There are many ways to implement these approximations: neural
networks, supporting vector machines, decision trees, etc. Example 2.4 uses one of such techniques:
classi�cation based on K-nearest neighbors [18], to perform predictions.
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Fig. 2. Performing predictions.

Example 2.4. Figure 2 shows how the K-Nearest Neighbors algorithm can be used to predict the
best optimization tuple for a program. Given an unknown program with feature vector (stores =
25, innermost = 1, instructions = 75), we �nd the four closest programs to this vector. The best
compilation action for this vector activates the ith optimization if said optimization is active among
the closest neighbors, and turns it o� otherwise.

2.2 The Need for Benchmarks
If training is performed with a small collection of benchmarks, then large chunks of the feature
space will remain uncovered by the known codes. Compilers can still perform predictions, given
the information made available during training; however, this information might not approximate
the behavior of unseen programs, as Example 2.5 details.

Example 2.5. The twelve programs used in our previous examples leave a large portion of the
feature space uncovered, which Figure 3 shows. When faced with an unknown program P , a
compiler can still �nd its four closest neighbors, like in Example 2.4. However, these programs are
too di�erent from P to approximate its properties. Predictions performed in this case are unlikely
to be accurate.

Example 2.6. One of the most well-established e�orts in the �eld of predictive compilation for the
C programming language is the Milepost GCC project [27]. Researchers involved in this project have
assembled a training set of programs, and have extracted static features to represent each program.
Training data is collected by compiling programs in the training set with varying sequences of
optimizations, and recording how each sequence performs. Di�erent machine learning models
use the knowledge acquired during training to predict which sequence to use when optimizing
an unseen program. Milepost GCC has been used to optimize for runtime and code size. As well-
engineered as this project is, its main training set still consists of only 21 programs.
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Fig. 3. Space not covered by programs in the training set.

2.3 Synthetic Program Generators
DeepSmith. There exist tools that generate synthetic programs in di�erent programming lan-

guages. One of the most recent elements in this family isD���S���� [19], an evolution of Cummins
et al.’s CLG�� [20].D���S���� has been shown to be able to produce impressively realistic OpenCL
programs. It is meant to be programming language agnostic; however, our attempts to use it towards
generating C programs met with no success. Below, we narrate three of our experiences. In every
case, we use compilable C programs drawn from a collection of half-a- million samples mined from
open-source repositories as the initial training corpus:

• Training set: 30,000 randomly chosen C �les. 107,264 candidate strings generated in 15 hours
using a seed function signature with one argument. Results: Nine programs could be compiled.
The largest LLVM bytecode, extracted from the program in Figure 4(a) had �ve instructions.

• Training set: 30,000 randomly chosen C �les. Generation: 131,760 candidate strings generated
in 30 hours using a seed function signature with four arguments. Results: 1,178 programs
could be successfully compiled. The largest program, shown in Figure 4(b) had six lines of
code, and yielded 36 instructions when converted to the LLVM representation.

• Training set: the 10,000 largest C �les in the available collection. Generation: 54,912 candidate
strings generated in 10 hours using a seed function signature with four arguments. Results:
Seventeen programs could be successfully compiled. The largest program, shown in Figure 4(c)
had �ve lines of code, and led to a program in LLVM assembly with 16 instructions.

void A(int*a, int*b, float c, char*d) {
  for (c = 0; c > 0; c++)
    for (c = 0; c < c; c++)
      c--;
  c--;
}

void A(*a) {
  E(a, "mapping error_ %u e-chain");
  return;
}

void A(int*a, int*b, float c, char*d) {
  "Thread : error 00000\n";
  int e, f, g, h;
  f = c;
}

(a) (b) (c)

Fig. 4. Largest programs produced by D���S���� in our experimental setup.
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We speculate that, when trained onto a relatively homogeneous corpus of programs, like the
OpenCL kernels of the original publication [19, 20], D���S���� can produce realistic benchmarks;
however, when given a varied training collection, this Markov-based technique still struggles to
produce good codes.

Compiler Fuzzers. A compiler fuzzer produces random programs to uncover bugs in compilers.
The most successful tool of this sort is CS���� [62]. CS���� is easy to use, and very e�ective.
Programs generated by CS���� have revealed hundreds of bugs in the LLVM infrastructure, and
dozens in gcc’s. LDRG��, another tool of similar purposes, has also been e�ectively employed to
�nd bugs in di�erent compilers.
Although tremendously successful as bug-funding resources, fuzzers are not meant to be used

to generate training data for predictive compilers. Programs generated by fuzzers like CS����
and LDRG�� tend to di�er from real-world codes. Thus, properties inferred from them may not
generalize to programs written by people. The next example supports this statement with empirical
data.

Example 2.7. As Figure 5 shows, the relation between stores and loads in the LLVM test suite, a
collection formed by 275 benchmarks, is 0.298. In other words, for each store found in a typical
program, we tend to �nd 3.35 load instructions1 Analyzing the same metric into 10K programs
generated by CS����, we �nd the inverse behavior: for each store we have 0.47 loads. 10K pro-
grams produced by LDRG�� fare no better: they contain only one store instruction. The programs
synthesized by D���S���� (1,204 samples) approximate the ratio found in the actual benchmarks:
for each store, we �nd 2.97 load instructions. Nevertheless, they are too small: the largest program
contains only two store instructions.
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Fig. 5. A comparison between the number of stores and loads found in di�erent benchmark collections. To
ease visual comparison, each plot shows the line (in pink) produced for the programs in the LLVM test suite.

The programming language community has done impressive work towards the generation of
benchmarks. However, example 2.7, plus the discussion in this section, indicate that there still
remains a long way to tread until we can have benchmarks useful to train predictive compilers. In
the next section, we introduce the collection that we have created, and explain the infrastructure
used in this construction.

3 THE ANGHA COLLECTION
3.1 The Program Reconstruction Framework
Wedeveloped a completely automated process for generating compilable programs from open source
projects. This infrastructure has three major components: (i) Repository Crawler; (ii) Function
Extractor; and (iii) Type Inference Engine. When used in combination, these three parts allow
us to build, from raw C �les available in the web, a virtually unbounded number of compilable
benchmarks. The following paragraphs describe the goal of each step in greater detail.
1This analysis was performed in LLVM bytecodes compiled with -O0, but optimized with the mem2reg pass.
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The Repository Crawler. The �rst stage in our framework consists in gathering the source-code
from which we shall build benchmarks. To this end, we resort to the largest host [29] of open-source
code in the world: GitHub. We built a simple web crawler that leverages GitHub’s public API
to download code from large open source C repositories. We �lter out projects tagged as using
the C programming language, then sort them by popularity (we use GitHub stars as a metric of
popularity)2.

The crawler traverses a pre�x of this sorted list, whose length is determined by the user, cloning
each of the repositories in order. The codebase of each repository is cleaned to remove �les which
are not C source or header �les. This corpus of C programs is then provided as input to the next
stage in the framework: the Function Extractor.

The Function Extractor. Once we have built a large body of C source �les, the function extractor
separates them into a collection of would-be programs, consisting of one C function per �le. To
perform this task, we use Clang, the C frontend of the LLVM Compilation Infrastructure. We built a
plugin which runs after Clang’s Abstract Syntax Tree building step. It traverses the program’s AST,
looking for function declaration nodes. If a declaration is found and has a matching de�nition, we
outline its implementation to a separate �le. The plugin can run in two modes: it can either create a
�le for each function found, or one single �le that aggregates all function de�nitions found within
the input source �le. Clang builds an AST for a program even if errors occur during compilation.
However, unless dependences can be solved, it cannot move from this point towards a �nal object
�le. Example 3.1 illustrates some issues that prevent compilation.

int bs_list_find(const BS_LIST *list, const uint8_t *data) {
  int r = find(list, data);
  //return only -1 and positive values
  if (r < 0) {
    return -1;
  }
  return list->ids[r];
}

6
7
8
9

10
11
12
13

1
2
3
4

typedef int uint8_t;
struct TYPE_4__ { int* ids; };
typedef struct TYPE_4__ BS_LIST ;
int find (BS_LIST const*, int const*);

Fig. 6. The code outside the grey area is an example of non-compilable candidate program extracted from
the toxcore repository. The code in the grey area was introduced by PsycheC, to ensure compilation.

Example 3.1. Figure 6 shows a function extracted from the source code of the Tox peer-to-peer
messaging application. This function (without the declarations in the grey box) is not compilable,
namely because it calls another function whose declaration is unavailable in line 7, and contains
references to an unknown type BS_LIST in lines 6, 7 and 12.

The Type Inference Engine. Once we have a large number of candidate programs, the next
challenge is to make them compilable. To solve issues that prevent compilation, such as those seen
in Example 3.1, we run each program through the PsycheC type inference engine [41]. PsycheC
will �ll the missing pieces within the candidate program, generating a version of its code that
compiles.

Example 3.2. The grey box in Figure 6 shows the result of running the function bs_list_find
through PsycheC. The resulting program has a function declaration for the missing function �nd,
2For reference, the top �ve repositories in this list are the Linux operating system kernel (https://github.com/torvalds/linux),
the Netdata system monitor (https://github.com/netdata/netdata), the Redis distributed database (https://github.com/
antirez/redis), the Git version control system (https://github.com/git/git) and the PHP interpreter reference implementation
(https://github.com/php/php-src).
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as well as a valid de�nition for the missing type BS_LIST. This is all the absent information that
prevented compilation of the original code. Therefore, any C compiler can successfully compile
this new version without errors.

There are two major caveats to this process. First, we stress that the programs we generate are
compilable, but not necessarily executable. For instance, while the new program in Figure 6 contains
a declaration for the missing function, it does not contain a de�nition for it. Thus, this program
cannot be linked. In Section 4 we present di�erent ways to bene�t from this benchmark, even
though it is not executable. Second, there is no guarantee that the resulting code that PsycheC
generates is semantically equivalent to its original counterpart, as Example 3.3 illustrates. Thus,
the benchmarks we generate are an approximation of the codes mined from the repositories, rather
than equivalent to them.

Example 3.3. For example, the de�nition for the BS_LIST generated for the program in Figure 6
contains only a single �eld ids. The actual de�nition for this type in the original project is much
more complex. However, since this is its only �eld used within the function, PsycheC generates a
much simpler version of it.

3.2 The Code Distribution Framework
To distribute the programs assembled using the techniques seen in Section 3.1, we have created a
public website. Di�erent benchmark suites can be downloaded from it. All these collections include
only compilable codes. Compilation has been certi�ed using LLVM v.6, v.8 and v10. Currently, we
distribute the following suites:

• The A���� collection:
– a set with 530K �les containing single functions;
– the 10K largest �les from the above set;
– 15K �les containing multiple functions.

• Actual benchmarks: 275 programs taken from the LLVM Test-Suite.
• The 10K largest programs among 530K programs generated with LDRG��.
• The 10K largest programs among 530K programs generated with CS����.
• All the 1,204 programs that we have produced with D���S���� (see Section 2.3).

Figure 7 reports data about the size of the programs in the di�erent collections. Program size is
measured as the number of instructions of these programs in the LLVM intermediate representation.
When converting programs to LLVM, we use the mem2reg pass, to move to virtual registers all the
program variables that, otherwise, would be allocated in stack.

Mean SD Median
Mystery 530K functions 63.24 97.32 36

Mystery 10K functions 534.07 336.38 433

Mystery 15K Files 266.64 419.79 119

CSmith 530K functions 5,844.67 5,876.67 3,933

CSmith 10K functions 20,190.90 3,649.04 19,161

LDRgen 530K functions 1,950.54 1,216.82 2,008

LDRGen 10K functions 4,753.50 322.65 4,668

DeepSmith 1K funcs 13.00 2.98 12

Actual Benchmarks 6,737.35 41,262.08 584

Fig. 7. Instructions per benchmarks in the collections that we distribute. SD is Standard Deviation.
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The A���� collection contains 529.498 programs. As we shall explain in Section 4.1, we have
already mined over a million compilable benchmarks using the infrastructure described in Sec-
tion 3.1. However, we found that leaving an 1M-�les tarball in our server was causing very long
streaming times. To mitigate this issue, we provide half-a-million programs in a single compressed
�le. To reach this �nal number, 530K �les, we used the following procedure:
(1) LetR be a list with the 100 largest git repositories with amajority of �les in the C programming

language, in descending order, and let C be the collection of benchmarks.
(2) While C has less than half-a-million �les, we:

(a) Remove r , the current largest repository from R;
(b) Add to C every function from r , using the methodology in Section 3.1.

This algorithm stopped with 79 repositories, which include, for instance, the Linux kernel, git itself
and FFmpeg.

The Code Search Engine. The public distribution contains a code search engine, which lets users
retrieve the K closest program to a given code. Proximity is measured as the Euclidean Distance
computed on the feature vectors introduced in Section 2.1. We use LLVM to mine features from
the intermediate representation of programs. Today, users can assemble vectors using features
taken from a collection of 239 candidate program characteristics. We also provide three prede�ned
feature vectors:

L���S��: 59 features produced by the LLVM’s --stats �ag applied on clang -O0.
N�������� ��������: 43 features taken from Filho et al. [26], which are themselves based

on the work of Namolaru et al. [44]. We use Filho et al.’s features, instead of Namolaru’s,
because the latter is de�ned over C syntax, and, like Filho et al., we run our feature extractor
onto LLVM bytecodes.

D������: A default seven-features vector for fast searches: number of instructions, number of
stores, number of loads, number of basic blocks, number of CFG edges, number of SSA variables
and number of variable uses

Our similarity search does not relate programs based on semantic equivalence, à la Alon et al. [2].
Rather, close programs, in our context, are codes that tend to behave similarly when exposed to the
same set of compiler optimizations. Example 3.4 illustrates this notion of similarity.

Example 3.4. Figure 8 shows results of a similarity search using numerical features vectors. The
test program is the C implementation of insertion sort available in the Rosetta Code website3. For
the sake of space, we show only the main loop of the query and result programs.

rosettacode.org/wiki/Sorting_algorithms/Insertion_sort#C
for(size_t i = 1; i < n; ++i) {
  int tmp = a[i];
  size_t j = i;
  while(j > 0 && tmp < a[j - 1]) {
    a[j] = a[j - 1]; --j;
  }
  a[j] = tmp;
}

1
2
3
4
5
6
7
8
9

Query

Result

ffmpeg.org/doxygen/0.6/wmavoice_8c-source.html
for (n = 0; n <= aidx; pulse_start++) {
  for (idx = pulse_start; idx < 0; idx += fcb->pitch_lag) {
    if (use_mask[idx >> 4] & (0x8000 >> (idx & 15))) {
      use_mask[idx >> 4] &= ~(0x8000 >> (idx & 15));
      n++;
      start_off = idx;
    }
  }
}

11
12
13
14
15
16
17
18
19
20

Fig. 8. Main loops of programs related by similarity search using numerical feature vectors.

3http://rosettacode.org/
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4 EVALUATION
This section investigates the following research questions4:

• RQ1: what is the current mining rate of the A���� infrastructure, described in Section 3.1?
• RQ2: what are the static properties typically found in programs available in open-source
repositories?

• RQ3: can A���� better approximate the properties of human-written benchmarks than code
produced by other program synthesizers?

• RQ4: can A���� better predict the impact of compiler optimizations onto real-world pro-
grams?

• RQ5: how e�ective is A����, when used as the training set in predictive compilation, when
compared to other synthetic benchmark collections?

• RQ6: Can we use A���� to train a predictive binary reduction tool that is competitive with
a state-of-the-art binary reducer?

Ground Truth. RQ3 and RQ4 presuppose the existence of a ground truth, that is, a collection of
“typical" real-world benchmarks. Di�erent benchmarks have been used at di�erent times and places
throughout the still short history of compilers. Therefore, �nding a universally acceptable ground
truth is an endeavour of improbable success. In this paper, we settle for a collection of 288 programs,
which includes every benchmark available in the LLVM test collection (275 programs), plus the
programs in the SPEC CINT CPU2006 suite (13 programs). In all, this collection gives us 1,450,035
lines of code, spread across 31,366 functions from 2,315 �les.

4.1 RQ1: Mining Throughput
The throughput of the infrastructure described in Section 3.1 is the rate in which it produces valid
benchmarks. A benchmark is considered valid when we can use both clang and gcc to convert it to
an object �le. In this section, we evaluate the throughput of our system.
Methodology:We set up our framework to collect and reconstruct code from the most popular
C repositories in GitHub, until a threshold of 1,000,000 compilable programs had been reached.
The metric used for ranking repositories by popularity was GitHub’s star feature. We executed the
extraction-reconstruction process in parallel on an 8-core Intel i7-3770, with 16 GBs of RAM, running
Ubuntu 16.04. We set a maximum execution timeout of 5 seconds for the type inference’s constraint-
solving step, as its uni�cation algorithm has a potentially exponential worst-case performance [41].
We were concerned with answering two questions about our framework’s performance:

• How long does it take, on average, to generate a compilable program?
• What is the success rate of the program reconstructor?

Discussion: To reach the threshold of 1,000,000 programs, our framework collected code from 148
repositories. The exact number of compilable programs generated was 1,044,023, and the entire
process took approximately 145 hours to terminate. This gives us an average rate of one program
generated per 0.5 second. In total, 1,882,687 candidate functions were extracted. Thus, the success
rate for the reconstruction process was approximately 55.5%. While 5 seconds initially seemed too
little time for the uni�cation algorithm to run, we found that only 3,666 reconstructions failed at
this step. The most common culprits for failures were errors during PsycheC’s parsing process,
due to unpreprocessed macros that were not syntactically valid in C. We found the distribution
of number of programs per repository to be somewhat dominated by the largest projects. For
instance, the Linux and FreeBSD kernels were the source of approximately 360k and 170k programs,
respectively. Thus, these two alone account for more than half of the resulting collection.

4Further experiments are available as Supplementary Material.
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4.2 RQ2: Static Properties
As previously mentioned in Section 1, one of the main bene�ts of having a large collection of
compilable C functions is the possibility to analyze them statically. In this section, we abuse this
possibility to inspect properties from real-world code. Some of these properties are folk knowledge.
For instance, Boissinot et al. [12] say about SPEC CPU2006: “About 95% percent of all variables have
less than �ve uses. Over 70% of all variables have only one use. However, there are also cases in which
variables have more than 600 uses." A���� lets us evaluate such statements in a much larger code
base.
Methodology: To analyze programs, we convert them to the LLVM intermediate representation,
and use LLVM’s passes to obtain data of interest. We use the mem2reg pass to move into virtual
registers the scalar values in the program. Using said methodology, this section analyzes four ratios
involving static features of programs:

• Number of stores vs number of loads;
• Number of basic blocks vs number of instructions;
• Number of de�nitions vs number of uses;
• Number of basic blocks vs number of CFG edges.

Discussion: Figure 9 shows relations between the static features previously mentioned for the
530K compilable C functions available in the A���� repository. Each feature contains regression
lines for the A���� programs, and for the ground-truth collection. We show the latter to contrast
A���� with other synthetic collections. Figure 5 has already provided some evidence that these
collections tend to produce programs too distant from typical C benchmarks. Each scatterplot in
Figure 9 shows the slope of the regression line. This information lets us conclude, for instance, that,
on average, each program variable (in the SSA representation) is used 1/0.594 = 1.68 times, and
each basic block tends to contain 1/0.146 = 6.85 instructions.

0
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Smp: 530K

0 2K#Loads

#S
to

re
s

Slp: 0.146 
Gth: 0.165
Smp: 530K

Slp: 0.626 
Gth: 0.755
Smp: 530K

Slp: 0.594 
Gth: 0.639
Smp: 530K

0

4K

0 4K

0

5K

0 5K

#D
ef

in
it

io
ns

#Uses 0 2.5K

#B
as

ic
 B

lo
ck

s

#CFG Edges

#B
as

ic
 B

lo
ck

s

#Instructions

0

main
 di

ag
on

al

Fig. 9. Ratios found for the 530K compilable C functions available in the A���� repository. Slp is the
regression slope for A����, and Gth is the regression slope for the ground-truth collection.
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Figure 9 reports results for individual functions; however, A���� also contains a collection of
15K compilable C �les. Although we do not report the analysis of this collection in this paper,
results are similar to those seen in Figure 9. Additionally, the static properties of the 10K largest
programs in the A���� distribution also follow these same trends.

4.3 RQ3: Code Similarity
This paper defends the thesis that A���� approximates more closely the properties of real-world
code than other synthetic program sets. This section provides evidence that such is the case. To
this end, we shall rely on the measure of “distance" between programs, which we discuss below.
Methodology: There exists a rich assortment of functions to measure the distance between
programs [45]. We have adopted two of them: the Euclidean distance on numerical feature vectors,
and the MCoe� relation between two programs proposed by Filho et al. [26]. The latter is a metric
that measures how similarly two programs respond to the same sequence of compiler optimizations.
Our choice is purely pragmatic: the infrastructure described in Section 3.2 already simpli�es the
computation of these two metrics. Furthermore, these two functions met the following properties,
assuming that p1 and p2 are programs: (i) d(p1,p2) � 0, (ii) d(p1,p2) = 0 if, and only if, p1 = p2, (iii)
d(p1,p2) = d(p2,p1), and (iv) d(p1,p2)  d(p1,p3) + d(p3,p2), for any p3 < {p1,p2}.
Discussion: Figure 10 shows the distance of each one of the 288 programs in the ground-truth to
the di�erent synthetic collections. The distance of a program p� in the ground-truth collection to a
collection C of synthetic benchmarks is given by d(p� ,pc ), where pc is the program in C that is the
closest to p� , and d is either the Euclidean distance on numerical feature vectors, orMCoe�.

Numerical 
Feature 
vectors

MCoeff
(the larger, the more similar)

Fig. 10. Distance between the ground-truth and di�erent synthetic benchmark collections. Each collection is
formed by the 10K largest programs out of a pool of 530K candidates. Red dots are programs from the SPEC
CPU2006 suite.

The average Euclidean distance from the ground-truth collection toA���� is 6.7x shorter than to
the CS���� (available in our public distribution) collection, and 33.3x shorter than to the LDRG��
(available in our public distribution—See Sec. 3.2) collection. This di�erence is smaller once we
consider MCoe�, but it is still noticeable. A���� is approximately 21% and 29% closer to the
ground-truth than the CS���� collection and the LDRG�� collection, respectively.
Diversity. We use the notions of distance seen in this section to demonstrate another fact: A����
is more diverse than the other synthetic collections that we use. The data in Figure 11 supports
this statement. For each point (Nb ,K)(c,d ) in Figure 11, we assume that c is either A����, CS����,
or LDRG��, and d is a distance function, e.g., numerical features, or MCoe�. In this case, Nb
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Fig. 11. Number of programs that win for K-nearest of some program in the ground-truth. The X-axis is K .

is the number of benchmarks from collection c that wins as one of the K closest programs to
some benchmark in the ground-truth collection. Thus, a very homogeneous collection c would
have all the programs with the same features; leading to (Nb ,K)(c,d ) = K always. A very diverse
collection, in turn, would give us (Nb ,K)(c,d ) = N� ⇥ K , where N� is the number of benchmarks
in the ground-truth set. Therefore, according to these de�nitions, the larger (Nb ,K)(c,d ), the more
heterogenous is collection c , and the better it covers the feature space.

4.4 RQ4: Predicting Compiler Behavior
The goal of this section is to support the thesis that A���� predicts more accurately the behavior
of compiler optimizations than other synthetic benchmarks suites.
Methodology: We shall investigate the code size reduction obtained by two di�erent optimization
levels of clang: -O1 and -O3, when applied onto di�erent benchmark collections. To this end, we
shall use the Mean Square Prediction Error (MSPE) as a measure of accuracy. MSPE is de�ned as
(predictedvalue� observedvalue)2. To carry out predictions, we �t a linear modelM onto a synthetic
benchmark, relating the size of programs when compiled with clang -O0 and clang -O1 (or -O3).
We then useM to predict program size of optimizations on the ground-truth collection.
Discussion: Figure 12 relates program sizes, considering di�erent benchmark collections, and
di�erent optimization levels. Each �gure shows a main diagonal, and the regression line. Because
optimizations tend to remove instructions, the regression line is always under the main diagonal.
Each �gure also shows the slope of the regression line (Slp), and a measure of accuracy (Err).
We let Err denote the ratio between the MSPE of a given collection (A����, CS����, LDRG��,
D���S����) and the MSPE of the ground-truth suite. We compute it as follows:
(1) Let ` be the regression line that we �t into a given synthetic collection.
(2) Let `� be the regression line that we �t into the ground-truth collection.
(3) Letm� be the MSPE that we obtain using `� onto the ground-truth collection (this is the

standard de�nition of MSPE).
(4) Letm be the MSPE that we obtain when using ` also onto the ground-truth collection.
(5) We let Err =m/m� .
Therefore, the lower the value of Err, the better is the predictor used to compute it. We report

the error for two di�erent collections in the A���� distribution: the �rst is formed by 530K single
functions; the second is formed by 15K whole C �les. As Figure 12 shows, A����’s error, regardless
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Fig. 12. The e�ect of compiler optimizations on the size of programs. Instructions are measured in hundreds.

of the collection used, is one order of magnitude less than the error produced by the other collections.
In general, programs from the CS���� and from the LDRG�� collections are easy to optimize.
These programs are made to be executed without any unde�ned behavior. To avoid unde�nedness,
the inputs are hardcoded in the programs. This excess of constants leads to code that is easy to
simplify via a combination of constant propagation and dead-code elimination. The programs
generated by D���S���� are also easy to optimize, although they do not contain hard-coded inputs
(they are not meant to be executed). In this case, optimization opportunities come from an excess
of dead-code.

4.5 RQ5: Predictive Compilation
This section provides evidence that A���� yields better training sets than other benchmark
generators. To this end, we have used di�erent synthetic collections of benchmarks to train Y�C�S,
the predictive compiler implemented by Filho et al. [26]. We chose this compiler simply because its
authors were kind enough to help us to set it up. Y�C�S uses a heuristic based on Kennedy and
Eberhart [35]’s particle swarm optimization (PSO) to �nd good optimization sequences.
Methodology: We use Y�C�S to �nd sequences of 60 optimizations. Any permutation of the known
universe of optimizations is acceptable. Said universe consists of 83 LLVM optimizations. Searching
the feature space, in this setting, is the problem of associating with the feature vector of a program
P the best list of optimization for P . Y�C�S’s PSO is parameterized with an initial population of 100
particles, which evolves for 10 generations. Nevertheless, the exact implementation of this heuristic
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is immaterial to the understanding of this paper—it su�ces to know that its quality varies with the
training set.

Once training is complete, Y�C�S uses KNN to �nd the programs in the training set that are the
closest to a given input program. We have used the two measures of distance seen in Section 4.3:
Euclidean distance applied onto numerical feature vectors, and MCoe�. Thus, given an unknown
program Pu , Y�C�S �nds the K programs that most resemble Pu ; the list of optimizations of these
programs is grouped in a set Sk . From Sk , Y�C�S builds several list of optimizations chosen according
to four di�erent strategies:

Elite: we let Se ✓ Sk be a subset of Sk ,K = 100 formed only by the lists that yield smaller code
than clang -Oz. The list of optimization of Pu is the average of the lists of programs in Se .

JX, X 2 {1, 10, 100}: we apply onto Pu the average of Just the X best lists of optimizations in
S100.

We have trained Y�C�S using the three collections mentioned in Section 3.2 with 10K �les:
A����, CS���� and LDRG��. Programs in the CS���� collection are larger; hence, training based
on them takes much longer: on average, three hours per �le. The other two collections yield faster
training time: on average 20 minutes per �le. In total, training took 87 days, using 16 cores running
at 3.40GHz. For validation, we use the ground-truth collection mentioned in Section 4.3.
Discussion: Figures 13 and 14 summarize the results of this experiment for the Euclidean and
MCoe� distances, respectively. A winning strategy is the pair in {Elite, J1, J10, J100} ⇥ {A����,
CS����, LDRG��} that yields the smallest bytecodes when used to optimize the validation set.
We omit results involving benchmarks produced by D���S����, because, due to their simplicity,
their feature vectors contain mostly zeros. Boldface fonts mark winners, considering di�erent
metrics: minimum, maximum, mean and median code reduction. A���� wins in most cases. When
using the Euclidean Distance with the Elite choice, A���� reduces code by 10.6% on average. If
we use MCoe�, gains are higher: 11.1%. These results were not obtained in small programs: the
ground-truth collection used as validation contains the 13 integer programs from SPEC CPU2006.

Mystery CSmith LDRGen
min
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min
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med
max
#P

Elite J1 J10 J100

-46 -86 -83 -46 -15 -61 -61 -33 -121 -145 -103 -33

10.6 2.1 8.6 10.7 0.1 3.9 8.3 10.6 4.4 -7.3 6.5 10.7

8.4 3.5 7.4 8.4 0.0 3.9 7.6 8.5 3.5 -4.9 4.8 8.3

41.2 33.2 36.4 41.2 12.0 34.2 35.3 39.6 32.6 16.6 32.6 44.4
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Fig. 13. Percentage of code reduction produced from the ground truth using Y�C�S parameterized with the
Euclidean distance. #P reports the number of programs in which we have observed positive results over clang
-Oz. Averages are geometric mean.

The gray cells in Figures 13 and 14 contain only results for programs in the validation set for
which we could �nd a list of optimization better than clang -Oz. #P is the number of such programs.
If we consider average values for only these programs, then the di�erence between A���� and the
other collections is less apparent, as we are counting only positive results. However, A���� is able
to �nd non-trivial lists of optimization for substantially more programs than the other synthetic
collections. For instance, using the Elite strategy with Euclidean distance (Fig. 13), Y�C�S trained
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with A���� was able to reduce the size of 280 programs (compared with clang -Oz), vs only 12 if
we train Y�C�S with CS����, and 199, if we train Y�C�S with LDRG��.
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Fig. 14. Percentage of code reduction achieved from the ground truth using Y�C�S parameterized with the
MCoe� distance.

4.6 RQ6: Code Size Reduction
This section provides some perspective on the code size reduction achieved by a compiler trained
withA����. To this end, we analyze the e�ects of this compiler ontoM�B���� [30]. This benchmark
suite is of particular interest to this paper for two reasons: (i) this is a collection of programs meant
to be deployed onto embedded devices; hence, size is a matter of concern for these benchmarks; (ii)
M�B���� has been used by Rocha et al. [51] as a challenging case study. Rocha et al. have designed
and implemented a technique to reduce code size by merging common sequences of instructions.
Their Function Merging by Sequence Alignment (FMSA) approach excels when applied onto large
code bases, as there are more opportunities for merging redundant code. However, their technique
yields poor results when applied onto small programs—a natural consequence of a statistical lack
of redundancies. Rocha et al. have usedM�B���� to demonstrate this last point.
Methodology: We compile M�B���� with Y�C�S trained with the 10K largest programs from
A����. Program similarity is measured with the Euclidean distance. We use the subset ofM�B����
available in the LLVM test suite.
Discussion: Figure 15 reports the results that we have obtained after compiling M�B���� with
Y�C�S. The baseline is clang -Os. This is the same baseline adopted by Rocha et al. For reference,
Figure 15 also reports, on top, the percentages of code size reduction observed by Rocha et al..
Numbers refer to the size of the object �le produced after compilation.

The amount of code size reduction obtained by Y�C�S is considerably higher than the reduction
achieved by FMSA; however, the bad performance of FMSA on M�B���� had already been noticed
by Rocha et al. [51]. FMSA does better on larger code sizes. Rocha et al. report averages of 6%.
Our best setup gives us an average reduction of 11.1% (see Fig. 13). Nevertheless, these numbers
cannot be directly compared: they were not produced in the same empirical setup. Nevertheless,
in at least eight benchmarks fromM�B����, where Rocha et al. have reported no gains, we could
observe reductions of 6.0% on average (geo-mean), compared to clang -Os. Another fact that this
experiment highlights is that clang -Os, and its more aggressive counterpart, clang -Oz, still leave
much room for improvement. In benchmarks like bitcount and strsearch it is possible to �nd
sequences of optimizations that are almost twice as e�cient as clang -Os, and approximately 8%
better than clang -Oz.
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5 RELATEDWORK
This paper deals with synthesis of benchmarks and code size reduction. Because the former has
been extensively discussed in Sections 1 and 2.3, we now focus on the latter. Yet, we start our
discussion mentioning some work on the synthesis of benchmarks that we have not presented
before.
Synthesis of Benchmarks. The creation of synthetic benchmarks has become a frequent focus
of research. Random program generators, such as CS���� [62], LDRG�� [9] and Orange3 [42, 43]
have been successfully used to produce C programs for stress-testing compilers, often �nding
correctness bugs in industrial implementations. While originally conceived to �nd bugs, these
tools have also been used to improve the quality of the optimized code emitted by mainstream C
compilers [10, 32]. Nevertheless, such tools, given their goals, are not designed to produce realistic
code.

Recent e�ort to create human-like programs has leveraged Deep Learning techniques to generate
code similar to real-world examples. CLG�� [20] uses this approach to generate OpenCL kernels,
while D���S���� [19] generalizes this technique to other languages. Nonetheless, we have found
that D���S���� has trouble synthesizing non-trivial C programs when trained with corpora of
open source projects. We could not use it to train Y�C�S, in Section 4.5, because the feature vectors
of its programs contained mostly zeros.
Code Size Reduction. Several compiler transformations have code reduction as either their main
goal or a desirable consequence [13, 16, 24, 36, 57]. One major category of such optimizations
employ Code Factoring, which involves the identi�cation of redundant code within the program.
Code motion techniques search for identical instructions and move or merge them to avoid redun-
dancy [13, 22, 40, 40]. Function Merging is the other main category in the �eld. These optimizations
�nd functions which are semantically similar or equivalent, and generate new functions that
substitute them. [34, 39, 56]. It is possible to merge even functions that are slightly di�erent. When
functions that meet a similarity threshold are found, a new procedure is created. The new function
contains additional control-�ow to choose between which original implementation should be
executed [23, 51].
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The contributions of this paper are orthogonal to these code size reduction techniques, because we
do not propose new optimizations. Rather, our synthetic benchmarks can help a compiler identify
when the use of each of these optimizations might be pro�table. To support this observation,
in Section 4.6 we showed how to augment a C compiler with knowledge extracted from our
benchmarks; hence, allowing it to outperform the state-of-the-art code reduction technique of Rocha
et al. [51].
Autotuning for Binary Size Reduction. Code size has been a common objective function of
predictive compilers. The earliest works in this direction used genetic algorithms to continually
improve the size of the code generated for target applications [17, 25, 37]. These early approaches
evolve a sequence of optimizations for each individual program; thus, search runs until convergence
for each program being optimized. The technique described in section 4.6, on the other hand, can
simply �nd the program in the training set that better approximates the target application. Therefore,
once the predictive model has been trained, the impact on compilation time is minimal.

6 CONCLUSION
This paper has presented a framework to produce compilable C programs out of open-source repos-
itories, which we have used to generate more than one million benchmarks. We ensure compilation
by inferring missing dependences via Hindley-Milner’s algorithm. This paper has presented several
applications of these benchmarks, mostly concerning the training of predictive compilers. In this
regard, we found it surprising that a mainstream compiler like clang still leaves much room for code
size reduction, both at the -Os and at the -Oz levels. For instance, in benchmarks like bitcount
and blowfish, both available in M�B����, it is possible to �nd sequences of optimizations that
are about 15% better than clang -Os, and approximately 8% better than clang -Oz. In addition to
these applications, we are aware of at least three other uses of A����, outside our group. This
collection of benchmarks has been used to measure the e�ectiveness of: (i) routing algorithms that
convert C programs to FPGAs; (ii) auto-tuned register assignment heuristics; and (iii) C parsers
synthesized from examples. Thus far, we have usedA���� only statically, that is, without executing
its programs. Therefore, a natural sequence of this work is the design of techniques to ensure the
absence of unde�ned behavior when A����’s programs run.
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